【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
【答案】見(jiàn)解析
【解析】試題分析:(Ⅰ)先證明CD⊥平面PAC,然后證明CD⊥AE;
(Ⅱ)要證PD⊥平面ABE,只需證明PD垂直平面ABE內(nèi)的兩條相交直線AE與AB即可.
證明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD,又AC⊥CD,PA∩AC=A,
故CD⊥平面PAC.
又AE平面PAC,∴CD⊥AE.
(Ⅱ)由題意:AB⊥AD,
∴AB⊥平面PAD,從而AB⊥PD.
又AB=BC,且∠ABC=60°,
∴AC=AB,從而AC=PA.
又E為PC之中點(diǎn),∴AE⊥PC.
由(Ⅰ)知:AE⊥CD,∴AE⊥平面PCD,從而AE⊥PD.
又AB∩AE=A,
故PD⊥平面ABE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a﹣ .
(1)若f(x)為奇函數(shù),求a的值.
(2)證明:不論a為何值f(x)在R上都單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(m>0)的離心率為,A,B分別為橢圓的左、右頂點(diǎn),F(xiàn)是其右焦點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn).
(1)求m的值及橢圓的準(zhǔn)線方程;
(2)設(shè)過(guò)點(diǎn)B且與x軸的垂直的直線交AP于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為研究學(xué)生語(yǔ)言學(xué)科的學(xué)習(xí)情況,現(xiàn)對(duì)高二200名學(xué)生英語(yǔ)和語(yǔ)文某次考試成績(jī)進(jìn)行抽樣分析. 將200名學(xué)生編號(hào)為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(jī)(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號(hào)是006,寫(xiě)出第五段抽取的學(xué)生編號(hào);
(Ⅱ)在這兩科成績(jī)差超過(guò)20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績(jī)均是語(yǔ)文成績(jī)高于英語(yǔ)成績(jī)的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級(jí)學(xué)生的語(yǔ)文和英語(yǔ)兩科成績(jī),寫(xiě)出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若無(wú)窮數(shù)列滿(mǎn)足: ,對(duì)于,都有(其中為常數(shù)),則稱(chēng)具有性質(zhì)“”.
(Ⅰ)若具有性質(zhì)“”,且, , ,求;
(Ⅱ)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , ,判斷是否具有性質(zhì)“”,并說(shuō)明理由;
(Ⅲ)設(shè)既具有性質(zhì)“”,又具有性質(zhì)“”,其中, , 互質(zhì),求證: 具有性質(zhì)“”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與點(diǎn)的軌跡交于不同的四個(gè)點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個(gè)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“城中觀海”是近年來(lái)國(guó)內(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個(gè)重要原因.暴雨會(huì)沖刷城市的垃圾雜物一起進(jìn)入下水道,據(jù)統(tǒng)計(jì),在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時(shí))是雜物垃圾密度x(單位:千克/立方米)的函數(shù).當(dāng)下水道的垃圾雜物密度達(dá)到2千克/立方米時(shí),會(huì)造成堵塞,此時(shí)排水量為0;當(dāng)垃圾雜物密度不超過(guò)0.2千克/立方米時(shí),排水量是90立方米/小時(shí);研究表明,0.2≤x≤2時(shí),排水量V是垃圾雜物密度x的一次函數(shù).
(1)當(dāng)0≤x≤2時(shí),求函數(shù)V(x)的表達(dá)式;
(2)當(dāng)垃圾雜物密度x為多大時(shí),垃圾雜物量(單位時(shí)間內(nèi)通過(guò)某段下水道的垃圾雜物量,單位:千克/小時(shí))f(x)=xV(x)可以達(dá)到最大,求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中:
(1)如果兩個(gè)函數(shù)都是增函數(shù),那么這兩個(gè)函數(shù)的積運(yùn)算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個(gè);
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域?yàn)閇a,b].
其中正確結(jié)論的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)[(5 )0.5+(0.008)﹣ ÷(0.2)﹣1]÷0.06250.25;
(2)[(1﹣log63)2+log62log618]÷log64.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com