【題目】已知點(diǎn)在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點(diǎn)

1)求點(diǎn)的軌跡的方程;

2)設(shè)圓與點(diǎn)的軌跡交于不同的四個(gè)點(diǎn),求四邊形的面積的最大值及相應(yīng)的四個(gè)點(diǎn)的坐標(biāo).

【答案】(1)(2)矩形的面積的最大值為此時(shí),

四個(gè)點(diǎn)的坐標(biāo)為: , ,

【解析】試題分析:(1)由線段垂直平分線性質(zhì)得,再根據(jù)橢圓定義確定軌跡,最后根據(jù)基本量求方程(2)由題意得四邊形為矩形,各點(diǎn)關(guān)于對(duì)稱軸對(duì)稱,因此可設(shè)點(diǎn)坐標(biāo),表示四邊形的面積,再根據(jù)基本不等式求最值,最后求對(duì)應(yīng)點(diǎn)坐標(biāo)

試題解析:解:(Ⅰ)由已知得: ,

所以點(diǎn)的軌跡是以, 為焦點(diǎn),長(zhǎng)軸長(zhǎng)的橢圓,

設(shè),所以點(diǎn)的軌跡的方程:

(Ⅱ)由對(duì)稱性可知,四邊形為矩形,不妨設(shè)為橢圓上第一象限的點(diǎn),

,

,,

所以,

當(dāng)且僅當(dāng), 時(shí),取“,

所以矩形的面積的最大值為此時(shí),

四個(gè)點(diǎn)的坐標(biāo)為: , , ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)任意x1 , x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;② ;③f(1﹣x)=2﹣f(x).則 =(
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù)).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 平面, , , , 為線段上一點(diǎn), , 的中點(diǎn).

(1)證明: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥ADAC⊥CD,∠ABC=60°,PA=AB=BC,

EPC的中點(diǎn).求證:

CD⊥AE;

PD⊥平面ABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合P={y|y=( x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為(
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A={x|x2﹣2x﹣8<0},B={x|x2+2x﹣3>0},C={x|x2﹣3ax+2a2<0},
(1)求A∩B.
(2)試求實(shí)數(shù)a的取值范圍,使C(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax﹣1(a>0,且a≠1).
(1)求f(2)+f(﹣2)的值;
(2)求f(x)的解析式;
(3)解關(guān)于x的不等式f(x)<4,結(jié)果用集合或區(qū)間表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬(wàn)元,每生產(chǎn)1萬(wàn)件還需另投入16萬(wàn)元的變動(dòng)成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬(wàn)件并全部銷售完,每一萬(wàn)件的銷售收入為萬(wàn)元,且),該公司在電飯煲的生產(chǎn)中所獲年利潤(rùn)為(萬(wàn)元),(注:利潤(rùn)=銷售收入-成本)

1寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式,并求年利潤(rùn)的最大值;

2為了讓年利潤(rùn)不低于2360萬(wàn)元,求年產(chǎn)量的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案