【題目】已知函數(shù)(為常數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為和.(2)實數(shù)的取值范圍是.
【解析】試題分析:(1)先確定函數(shù)定義域,再求導(dǎo)函數(shù),進而求定義區(qū)間上導(dǎo)函數(shù)的零點,最后列表分析導(dǎo)函數(shù)符號:確定單調(diào)區(qū)間,(2)恒成立問題,解決方法為轉(zhuǎn)化為對應(yīng)函數(shù)最值問題: 的最大值小于零,先求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)是否變化進行討論:當(dāng)時,單調(diào)遞增,無最大值;當(dāng)時,先增后減,在極值點處取最大值,不恒小于零:當(dāng)時, 在上單調(diào)遞減, .
試題解析:解:(Ⅰ)函數(shù)的定義域為,
當(dāng)時, ,
,
由得, ,
由得, 或,
∴函數(shù)的單調(diào)增區(qū)間為,
單調(diào)減區(qū)間為和.
(Ⅱ)當(dāng)時, 恒成立,
令,
問題轉(zhuǎn)換為時, .
,
①當(dāng)時, ,
在上單調(diào)遞增,
此時無最大值,故不合題意.
②當(dāng)時,令解得, ,
此時在上單調(diào)遞增,
此時無最大值,故不合題意.
③當(dāng)時,令解得, ,
當(dāng)時, ,
而在上單調(diào)遞增,在上單調(diào)遞減,
,
令, ,
則,
在上單調(diào)遞增,
又,
當(dāng)時, ,
在上小于或等于不恒成立,即不恒成立,
故不合題意.
當(dāng)時, ,
而此時在上單調(diào)遞減, ,符合題意.
綜上可知,實數(shù)的取值范圍是.
(也可用洛必達法則)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點為﹣1和1,求實數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個實數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=﹣x|x|+px.
(1)判斷函數(shù)的奇偶性;
(2)當(dāng)p=﹣2時,判斷函數(shù)f(x)在(﹣∞,0)上單調(diào)性并加以證明;
(3)當(dāng)p=2時,畫出函數(shù)的圖象并指出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線: .
(Ⅰ)求曲線的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與相交于兩點,設(shè)點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:(m>0)的離心率為,A,B分別為橢圓的左、右頂點,F(xiàn)是其右焦點,P是橢圓C上異于A、B的動點.
(1)求m的值及橢圓的準(zhǔn)線方程;
(2)設(shè)過點B且與x軸的垂直的直線交AP于點D,當(dāng)直線AP繞點A轉(zhuǎn)動時,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對高二200名學(xué)生英語和語文某次考試成績進行抽樣分析. 將200名學(xué)生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:
(Ⅰ)若第一段抽取的學(xué)生編號是006,寫出第五段抽取的學(xué)生編號;
(Ⅱ)在這兩科成績差超過20分的學(xué)生中隨機抽取2人進行訪談,求2人成績均是語文成績高于英語成績的概率;
(Ⅲ)根據(jù)折線圖,比較該校高二年級學(xué)生的語文和英語兩科成績,寫出你的結(jié)論和理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在圓上, 的坐標(biāo)分別為, ,線段的垂直平分線交線段于點
(1)求點的軌跡的方程;
(2)設(shè)圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應(yīng)的四個點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為 (為參數(shù)),以直角坐標(biāo)系原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)設(shè)點為曲線上的動點,求點到直線距離的最大值及其對應(yīng)的點的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com