【題目】已知函數(shù).

1)若,求證:函數(shù)恰有一個(gè)負(fù)零點(diǎn);(用圖象法證明不給分)

2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】

1)由單調(diào)性的性質(zhì)可判斷出上單調(diào)遞減,利用零點(diǎn)存在定理可知存在唯一的使得,由此可證得結(jié)論;

2)令,結(jié)合函數(shù)圖象可知,若恰有三個(gè)零點(diǎn),則方程必有兩根,且,,;當(dāng)時(shí)可求得,不合題意;當(dāng)時(shí),根據(jù)二次函數(shù)圖象可得到不等式組,由此解得結(jié)果.

1)若,則

時(shí),單調(diào)遞減,單調(diào)遞減

當(dāng)時(shí),單調(diào)遞減

,,則存在唯一的使得

即函數(shù)在區(qū)間恰有一個(gè)零點(diǎn)

2)令,,要使得函數(shù)恰有三個(gè)零點(diǎn)

圖象如下圖所示:

則方程必有兩根,且

①若,時(shí),令

,即,解得:

②若,則,即 ,不合題意

綜上所述:實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20171018日至1024日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱黨的“十九大”在北京召開一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個(gè)問題,每個(gè)問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的圖象的相鄰兩條對(duì)稱軸之間的距離為4,且有一個(gè)零點(diǎn)為.

(1)求函數(shù)的解析式;

(2)若,且,求的值;

(3)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)生產(chǎn)企業(yè)為了解消費(fèi)者對(duì)某款手機(jī)的認(rèn)同情況,通過銷售部隨機(jī)抽取50名購(gòu)買該款手機(jī)的消費(fèi)者,并發(fā)出問卷調(diào)查(滿分50分),該問卷只有20份給予回復(fù),這20份的評(píng)分如下:

47,36,28,48,48,44,50,46,50,37,35,49

38,37,50,36,38,45,29,39

1)完成下面的莖葉圖,并求12名男消費(fèi)者評(píng)分的中位數(shù)與8名女消費(fèi)者評(píng)分的眾數(shù)及平均值;

2

3

4

5

滿意

不滿意

合計(jì)

合計(jì)

2)若大于40分為滿意,否則為不滿意,完成上面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為消費(fèi)者對(duì)該款手機(jī)的滿意度與性別有關(guān);

3)若從回復(fù)的20名消費(fèi)者中按性別用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求至少有1名女性消費(fèi)者被抽到的概率

附:

0.05

0.025

0.01

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下關(guān)于線性方程組解的個(gè)數(shù)的命題.

①,②,③,

1)方程組①可能有無窮多組解;

2)方程組②可能有且只有兩組不同的解;

3)方程組③可能有且只有唯一一組解;

4)方程組④可能有且只有唯一一組解.

其中真命題的序號(hào)為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的新能源產(chǎn)品上市后在國(guó)內(nèi)外同時(shí)銷售,已知第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對(duì)這批產(chǎn)品上市后的國(guó)內(nèi)外市場(chǎng)銷售情況進(jìn)行了跟蹤調(diào)查,如圖所示,其中圖①中的折線表示的是國(guó)外市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;圖②中的拋物線表示的是國(guó)內(nèi)市場(chǎng)的日銷售量與上市時(shí)間的關(guān)系;下表表示的是產(chǎn)品廣告費(fèi)用、產(chǎn)品成本、產(chǎn)品銷售價(jià)格與上市時(shí)間的關(guān)系.

圖① 圖②

第t天產(chǎn)品廣告費(fèi)用(單位:萬元)

每件產(chǎn)品成本(單位:萬元)

每件產(chǎn)品銷售價(jià)格(單位:萬元)

3

6

10

3

5

(1)分別寫出國(guó)外市場(chǎng)的日銷售量、國(guó)內(nèi)市場(chǎng)的日銷售量與產(chǎn)品上市時(shí)間t的函數(shù)關(guān)系式;

(2)產(chǎn)品上市后的哪幾天,這家公司的日銷售利潤(rùn)超過260萬元?

(日銷售利潤(rùn)=(單件產(chǎn)品銷售價(jià)-單件產(chǎn)品成本)×日銷售量-當(dāng)天廣告費(fèi)用,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知,對(duì)于任意的,有.

(1)求數(shù)列的通項(xiàng)公式.

(2)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式.

(3)設(shè),是否存在實(shí)數(shù),當(dāng)時(shí),恒成立?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表.

x

0

4

5

1

2

2

1

的導(dǎo)函數(shù)的圖象如圖所示:下列關(guān)于的命題:

函數(shù)是周期函數(shù);

函數(shù)是減函數(shù);

如果當(dāng)時(shí),的最大值是2,那么t的最大值為4;

函數(shù)的零點(diǎn)個(gè)數(shù)可能為0、1、2、3、4個(gè).

其中正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比.已知橢圓

1)若橢圓,判斷是否相似?如果相似,求出的相似比;如果不相似,請(qǐng)說明理由;

2)寫出與橢圓相似且焦點(diǎn)在軸上、短半軸長(zhǎng)為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)關(guān)于直線對(duì)稱,求實(shí)數(shù)的取值范圍;

3)如圖:直線與兩個(gè)相似橢圓分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使組成以為相似比的兩個(gè)相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案