【題目】某公司的新能源產(chǎn)品上市后在國內(nèi)外同時銷售,已知第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對這批產(chǎn)品上市后的國內(nèi)外市場銷售情況進(jìn)行了跟蹤調(diào)查,如圖所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關(guān)系;圖②中的拋物線表示的是國內(nèi)市場的日銷售量與上市時間的關(guān)系;下表表示的是產(chǎn)品廣告費用、產(chǎn)品成本、產(chǎn)品銷售價格與上市時間的關(guān)系.
圖① 圖②
第t天產(chǎn)品廣告費用(單位:萬元) | 每件產(chǎn)品成本(單位:萬元) | 每件產(chǎn)品銷售價格(單位:萬元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分別寫出國外市場的日銷售量、國內(nèi)市場的日銷售量與產(chǎn)品上市時間t的函數(shù)關(guān)系式;
(2)產(chǎn)品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?
(日銷售利潤=(單件產(chǎn)品銷售價-單件產(chǎn)品成本)×日銷售量-當(dāng)天廣告費用,)
【答案】(1),,,;(2)在第,共天,這家公司的日銷售利潤超過萬元.
【解析】
(1)根據(jù)兩個圖像分別求出(分段函數(shù))、(二次函數(shù))的解析式.
(2)根據(jù)(1)得到分段函數(shù),再根據(jù)表格中的成本和銷售價格得到日銷售利潤的分段函數(shù),解不等式可得的取值范圍.
(1)由圖①的折線圖可得:
,
同理圖②表示的是二次函數(shù)一部分,可得:
,,.
(2)設(shè)這家公司的日銷售利潤為,則國內(nèi)外日銷售總量為
由表可知:
,
當(dāng)時,,
故在上單調(diào)遞增,且,;
當(dāng)時,令,無解;
當(dāng)時,.
答:新能源產(chǎn)品上市后,在第16,17,18,19,20,共5天,這家公司的日銷售利潤超過260萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若存在使得,求實數(shù)的取值范圍;
(Ⅲ)若當(dāng)時恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生活中萬事萬物都是有關(guān)聯(lián)的,所有直線中有關(guān)聯(lián)直線,所有點中也有相關(guān)點,現(xiàn)在定義:平面內(nèi)如果兩點、都在函數(shù)的圖像上,而且滿足、兩點關(guān)于原點對稱,則稱點對(、)是函數(shù)的“相關(guān)對稱點對”(注明:點對(、)與(、)看成同一個“相關(guān)對稱點對”).已知函數(shù),則這個函數(shù)的“相關(guān)對稱點對”有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,設(shè)的兩個極值點,()恰為的零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求證:函數(shù)恰有一個負(fù)零點;(用圖象法證明不給分)
(2)若函數(shù)恰有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù),,的部分圖象如圖所示,有下列結(jié)論:
①函數(shù)的最小正周期為
②函數(shù)在上的值域為
③函數(shù)的一條對稱軸是
④函數(shù)的圖象關(guān)于點對稱
⑤函數(shù)在上為減函數(shù)
其中正確的是______.(填寫所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,摩天輪的半徑為,點距地面的高度為,摩天輪按逆時針方向作勻速運動,且每轉(zhuǎn)一圈,摩天輪上點的起始位置在最高點.
(1)試確定點距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時間(單位:)的函數(shù)關(guān)系式;
(2)在摩天輪轉(zhuǎn)動一圈內(nèi),有多長時間點距離地面超過?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,點D是A1B的中點,點E是B1C1的中點.
(1)求證:DE∥平面ACC1A1;
(2)若△ABC的面積為,三棱柱ABC﹣A1B1C1的高為3,求三棱錐D﹣BCE的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com