【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線的普通方程,并說明其表示什么軌跡;

(2)若直線的極坐標方程為,試判斷直線與曲線的位置關系,若相交,請求出其弦長.

【答案】(1)曲線的普通方程為,曲線表示為圓心,為半徑的圓;(2).

【解析】試題分析:(1)曲線的普通方程為,表示為圓心,為半徑的圓;(2)直線的直角坐標方程為,,弦長為.

試題解析:

(1)因為曲線的參數(shù)方程為為參數(shù)),所以

所以曲線的普通方程為

曲線表示為圓心,為半徑的圓.

(2)因為直線的極坐標方程為,所以,

因為,,所以直線的直角坐標方程為.

易知圓心到直線的距離為

所以直線與圓相交,弦長為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中, PA⊥平面ABCDEBD的中點,GPD的中點,△DAB≌△DCB,EA=EB=AB=1, ,連接CE并延長交ADF

Ⅰ)求證:ADCG;

Ⅱ)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求曲線在點處的切線方程;

2)當時,討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的圓心到直線的距離;

(2)設圓與直線交于點,若點的坐標為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)中國日報網(wǎng)報道:2017年11月13日,TOP500發(fā)布的最新一期全球超級計算機500強榜單顯示,中國超算在前五名中占據(jù)兩席,其中超算全球第一“神威太湖之光”完全使用了國產(chǎn)品牌處理器。為了了解國產(chǎn)品牌處理器打開文件的速度,某調(diào)查公司對兩種國產(chǎn)品牌處理器進行了12次測試,結果如下(數(shù)值越小,速度越快,單位是MIPS

測試1

測試2

測試3

測試4

測試5

測試6

測試7

測試8

測試9

測試10

測試11

測試12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

分別表示第次測試中品牌A和品牌B的測試結果,記

)求數(shù)據(jù)的眾數(shù);

)從滿足的測試中隨機抽取兩次,求品牌A的測試結果恰好有一次大于品牌B的測試結果的概率;

(Ⅲ)經(jīng)過了解,前6次測試是打開含有文字和表格的文件,后6次測試是打開含有文字和圖片的文件.請你依據(jù)表中數(shù)據(jù),運用所學的統(tǒng)計知識,對這兩種國產(chǎn)品牌處理器打開文件的速度進行評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程是:是參數(shù),是常數(shù)).以為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線相交于、兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標原點為極點,軸非負軸為極軸的極坐標系中,曲線(為極角).

(1)將曲線化為極坐標方程,當時,將化為直角坐標方程;

(2)若曲線相交于一點,求點的直角坐標使到定點的距離最小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構組織語文、數(shù)學學科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機抽樣的方法從獲得數(shù)學和語文二等獎的學生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,矩形中,,平面,,上的點,且平面.

(1)求證:平面;

(2)求平面與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案