已知過點(1,1)且與2x+y+1=0平行的直線經(jīng)過拋物線y2=mx的焦點,則實數(shù)m=
 
考點:拋物線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出過點(1,1)且與2x+y+1=0平行的直線,進而得到直線與x軸的交點,進而可得拋物線y2=mx的焦點,結(jié)合拋物線的性質(zhì),可得答案.
解答: 解:∵設過點(1,1)且與2x+y+1=0平行的直線為:2x+y+C=0,
將(1,1)代入后解得:C=-3,
故過點(1,1)且與2x+y+1=0平行的直線為2x+y-3=0,
∵拋物線y2=mx的焦點在x軸上,
當y=0時,由2x+y-3=0得:x=
3
2
,
p
2
=
3
2
,
故m=2p=6.
故答案為:6
點評:本題考查的知識點是與直線平行的直線的求法,拋物線的簡單性質(zhì),難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在以點C為圓心,且與直線BD相切的圓內(nèi)運動,設
AP
AD
AB
(α,β∈R),則α+β的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}的公比大于1,a5-a1=15,a4-a2=6,則a3=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)計算a2,a3,a4,推測數(shù)列{an}的通項公式;
(2)設Sn表示數(shù)列{an}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2014年9月初,臺灣曝“地溝油”大案,味全、85度C和美心集團等知名企業(yè)紛紛中招.內(nèi)陸某食品企業(yè)在政府部門的支持下,進行技術攻關,新上了一種從“食品殘渣”中提煉出生物柴油的項目,經(jīng)測算,該項目處理成本y(元)與月處理量x(噸)之間的函數(shù)可以近似的表示為:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)
,且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補貼.
(1)當x∈[200,300)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個動點在圓x2+y2=1上移動時,它與定點(3,0)連線中點的軌跡方程是( 。
A、(x+3)2+y2=4
B、(X-3)2+y2=1
C、(X+
3
2
2+y2=
1
2
D、(2x-3)2+4y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內(nèi)角A,B,C所對邊的長分別是a,b,c,且b=4,c=2,A=2B.
(1)求a的值;
(2)求sin(A+
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在半徑為1的半圓內(nèi)放置一個邊長為
1
2
的正方形ABCD,向半圓內(nèi)任投一點,則點落在正方形內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+2
a
•x+b=0是關于x的一元二次方程.
(Ⅰ)若a是從集合{0,1,2,3}四個數(shù)中任取的一個數(shù),b是從集合{0,1,2}三個數(shù)中任取的一個數(shù),求上述方程有實數(shù)根的概率;
(Ⅱ)若a∈[0,3],b∈[0,2],求上述方程有實數(shù)根的概率.

查看答案和解析>>

同步練習冊答案