分析 利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,求得tanα=-2,從而求得要求式子的值.
解答 解:∵sin(3π+α)=2sin$({\frac{3π}{2}+α})$,∴-sinα=-2cosα,∴tanα=-2,
∴(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=$\frac{2tanα-3}{4tanα-9}$=$\frac{-4-3}{-8-9}$=$\frac{7}{17}$;
(2)sin2α+sin 2α=$\frac{{sin}^{2}α+2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2tanα}{{tan}^{2}α+1}$=$\frac{4-4}{4+1}$=0.
點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 平行 | C. | 異面 | D. | 平行或異面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m∥n,n∥α⇒m∥α | B. | α⊥β,α∩β=m,l⊥m⇒l⊥β | ||
C. | l⊥m,l⊥n,m?α,n?α⇒l⊥α | D. | m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{\sqrt{3}}}{6}$ | D. | $-\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com