分析 (1)連接OC,AC,推導(dǎo)出OC⊥AD,O P⊥AD.從而AD⊥平面P OC,由此能證明PC⊥AD.
(2)設(shè)點D到平面 P AC的距離為h,由VD-P AC=V P-ACD,能求出直線DM與平面PAC所成的角的正弦值.
解答 證明:(1)連接OC,AC,
由題意可知△P AD,△ACD均為正三角形.
所以O(shè)C⊥AD,O P⊥AD.
又OC∩O P=O,OC?平面POC,OP?平面POC,
所以AD⊥平面POC,
又PC?平面POC,
所以PC⊥AD.
解:(2)∵PO⊥平面ABCD,∴PO為三棱錐P-ACD的高.
在Rt△P OC中,${P}{O}={O}C=\sqrt{3}$,${P}C=\sqrt{6}$
在△PAC中,P A=AC=2,${P}C=\sqrt{6}$,
邊PC上的高${A}{M}=\sqrt{{P}{{A}^2}-{P}{{M}^2}}=\frac{{\sqrt{10}}}{2}$,
所以△P AC的面積${S_{△{P}{A}C}}=\frac{1}{2}{P}C•{A}{M}=\frac{1}{2}×\sqrt{6}×\frac{{\sqrt{10}}}{2}=\frac{{\sqrt{15}}}{2}$.
設(shè)點D到平面 P AC的距離為h,
由VD-P AC=V P-ACD得,$\frac{1}{3}{S_{△{P}{A}C}}•h=\frac{1}{3}{S_{△{A}CD}}•{P}{O}$,
又${S_{△{A}CD}}=\frac{1}{2}×2\sqrt{3}=\sqrt{3}$,
所以$\frac{1}{3}×\frac{{\sqrt{15}}}{2}×h=\frac{1}{3}×\sqrt{3}×\sqrt{3}$,解得$h=\frac{{2\sqrt{15}}}{5}$.
故點D到平面PAC的距離為$\frac{{2\sqrt{15}}}{5}$.
設(shè)直線DM與平面PAC所成的角為θ
則$sinθ=\frac{h}{DM}=\frac{{\frac{{2\sqrt{15}}}{5}}}{{\frac{{\sqrt{10}}}{2}}}=\frac{{2\sqrt{6}}}{5}$,
所以直線DM與平面PAC所成的角的正弦值為$\frac{{2\sqrt{6}}}{5}$.
點評 本題考查線線垂直的證明,考查線面角的正弦值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | ±$\frac{1}{7}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | ±$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{16}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4${∫}_{0}^{a}$xf(x)dx | B. | 2${∫}_{0}^{a}$x[f(x)+f(-x)]dx | C. | 0 | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com