分析 (1)利用函數(shù)的對稱軸以及方程的根的關(guān)系,即可求解函數(shù)的表達(dá)式.
(2)求出函數(shù)的對稱軸,通過m,n與對稱軸討論,結(jié)合函數(shù)的定義域與值域,列出方程求解即可.
解答 解:∵函數(shù)滿足f(-x+5)=f(x-3),∴$f(x)的對稱軸為x=1∴-\frac{2a}=1$,
因?yàn)榉匠蘤(x)=x有等根,即ax2+bx-x=0,有重根,∴△=0,可得a=$-\frac{1}{2}$,
可得b=1,
∴二次函數(shù)f(x)=-$\frac{1}{2}$x2+x.
(2)二次函數(shù)f(x)=-$\frac{1}{2}$x2+x.的對稱軸為x=1,
當(dāng)m<n<1時(shí),$\left\{\begin{array}{l}{f(m)=3m}\\{f(n)=3n}\end{array}\right.$,∴$\left\{\begin{array}{l}{n=0}\\{m=-4}\end{array}\right.$;
當(dāng)1<m<n時(shí),$\left\{\begin{array}{l}{f(m)=3n}\\{f(n)=3m}\end{array}\right.$,方程無解;
當(dāng)n>1>m時(shí),f(1)=$\frac{1}{2}$=3n,無解;
綜上所述,n=0,m=-4.
點(diǎn)評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,函數(shù)的對稱軸與函數(shù)的定義域與值域的關(guān)系,考查分類討論思想以及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com