1.設(shè)函數(shù)f(x)=x-a(x+1)ln(x+1)(a≥0).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),若方程f(x)-t=0在[-$\frac{1}{2}$,1]上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(3)證明:當(dāng)m>n>0時(shí),(1+m)n<(1+n)m

分析 (1)求導(dǎo)數(shù),通過討論a的范圍,確定函數(shù)的單調(diào)性即可;
(2)由上知,f(x)在[-$\frac{1}{2}$,0]上單調(diào)遞增,在[0,1]上單調(diào)遞減,即可求實(shí)數(shù)t的取值范圍;
(3)設(shè)g(x)=$\frac{ln(1+x)}{x}$,求導(dǎo)數(shù)g'(x),根據(jù)x-(1+x)ln(1+x)在(0,+∞)單調(diào)遞減,證明即可.

解答 解:(1)f′(x)=1-aln(x+1)-a,
①當(dāng)a=0時(shí),f′(x)=1>0,∴f(x)的單調(diào)遞增區(qū)間為(-1,+∞);
②當(dāng)a>0時(shí),由f′(x)>0,解得:-1<x<${e}^{\frac{1-a}{a}}$-1,
由f′(x)<0,解得:x>${e}^{\frac{1-a}{a}}$-1,
∴f(x)的單調(diào)遞增區(qū)間為(-1,${e}^{\frac{1-a}{a}}$-1),單調(diào)遞減區(qū)間為(${e}^{\frac{1-a}{a}}$-1,+∞);
(2)由上知,f(x)在[-$\frac{1}{2}$,0]上單調(diào)遞增,在[0,1]上單調(diào)遞減,
∵f(0)=0,f(1)=1-ln4,f(-$\frac{1}{2}$)=-$\frac{1}{2}$+$\frac{1}{2}$ln2,
∴f(1)-f(-$\frac{1}{2}$)<0,
∴t∈[-$\frac{1}{2}$+$\frac{1}{2}$ln2,0),方程f(x)=t有兩解;
(3)證明:設(shè)g(x)=$\frac{ln(1+x)}{x}$,
則g'(x)=$\frac{x-(1+x)ln(1+x)}{{x}^{2}(1+x)}$,
由(1)知,x-(1+x)ln(1+x)在(0,+∞)單調(diào)遞減,
∴x-(1+x)ln(1+x)<0,即g(x)是減函數(shù),
而m>n>0,所以g(m)<g(n),得 $\frac{ln(1+n)}{n}$>$\frac{ln(1+m)}{m}$,
得mln(1+n)>nln(1+m),故(1+m)n<(1+n)m

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,考查不等式的證明,考查化歸思想,考查構(gòu)造函數(shù),是一個(gè)綜合題,題目難度中等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.${({x^3}-\frac{1}{x^2})^5}$展開式中的常數(shù)項(xiàng)是-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各組函數(shù)表示同一函數(shù)的是(  )
A.f(x)=x,g(x)=($\sqrt{x}$)2B.f(x)=x2+1,g(t)=t2+1C.f(x)=1,g(x)=$\frac{x}{x}$D.f(x)=x,g(x)=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知二次函數(shù)f(x)=ax2+bx(a,b為常數(shù),且a≠0)滿足條件:f(-x+5)=f(x-3)且方程f(x)=x有等根.
(1)求f(x)的表達(dá)式;
(2)是否存在實(shí)數(shù)m,n(m<n)使f(x)的定義域和值域分別是[m,n]和[3m,3n],如果存在,求出m,n的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)i為虛數(shù)單位,則(x+i)6的展開式中含x4的項(xiàng)為-15x4 (用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)X={$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$},若集合G⊆X,定義G中所有元素之乘積為集合G的“積數(shù)”(單元素集合的“積數(shù)”是這個(gè)元素本身),則集合X的所有非空子集的“積數(shù)”的總和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,則sinβ=( 。
A.$\frac{1}{7}$B.±$\frac{1}{7}$C.$\frac{\sqrt{2}}{10}$D.±$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(Ⅰ)若x=2是函數(shù)f(x)的一個(gè)極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的不等式f(x)≤ax-1恒成立,求整數(shù)a的最小值;
(Ⅲ)是否存在x0>0,使得|f(x)+$\frac{1}{2}$ax2-f(x0)|<0對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.滿足{-1,0,1}?M⊆{-1,0,1,2,3,4}的集合M的個(gè)數(shù)是( 。
A.4個(gè)B.6個(gè)C.7個(gè)D.8個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案