【題目】如圖,點為正方形的中心,為正三角形,平面平面,是線段的中點,則( )
A.直線,是相交直線
B.直線與直線所成角等于
C.直線與直線所成角等于直線與直線所成角
D.直線與平面所成角小于直線平面所成角
【答案】ABD
【解析】
A:結(jié)合三角形中位線定理、平行線的性質(zhì)、梯形的定義進行判斷即可;
B:取的中點為,利用線面垂直的判定定理、平行線的性質(zhì)進行判斷即可;
C:利用異面直線所成角的定義,計算出直線與直線所成角、直線與直線所成角,然后判斷即可;
D:根據(jù)線面角的定義求出直線與平面所成角和直線平面所成角,然后比較判斷即可.
A:連接,因為點為正方形的中心,是線段的中點,所以有,,因此四邊形是梯形,故直線,是相交直線,所以本選項是正確的;
B:取的中點為,連接,為正三角形,所以有,點為正方形的中心,所以有,所以平面,因此有,而,所以直線與直線所成角等于,故本選項是正確的;
C:因為,所以是直線與直線所成角,由正三角形的性質(zhì)可知,,因為,所以是直線與直線所成角.連接,設正方形的邊長為2,由勾股定理以及上述的分析可知:,所以,因此有,由余弦定理可知:
,所以本選項是錯誤的;
D:取的中點,連接,所以平面,所以是直線與平面所成角,,所以,是直線平面所成角,,因為,所以直線與平面所成角小于直線平面所成角,故本選項是正確的.
故選:ABD
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當時,設函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線與恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:和點,P是圓上一點,線段BP的垂直平分線交CP于M點,則M點的軌跡方程為______;若直線l與M點的軌跡相交,且相交弦的中點為,則直線l的方程是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解初三學生的體育鍛煉情況,隨機抽取了40名學生對一周的體育鍛煉時間長(單位:小時)進行統(tǒng)計,并將數(shù)據(jù)整理如下:
時間長 性別 | |||||
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)采用樣本估計總體的方式,試估計該校的所有學生中一周的體育鍛煉時間長為的概率;
(2)若將一周的體育鍛煉時間長不低于3小時的評定為“體育鍛煉合格者”,否則為“不合格者”,根據(jù)以上數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有95%的把握認為體育鍛煉與性別有關?附:,其中.
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,焦距為.
(1)求橢圓的標準方程;
(2)若一直線與橢圓相交于、兩點(、不是橢圓的頂點),以為直徑的圓過橢圓的上頂點,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標原點為極點,以軸正半軸為極軸建立的極坐標系中,曲線的極坐標方程為,曲線的直角坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線分別相交于異于原點的點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com