【題目】已知橢圓C 的離心率與雙曲線的離心率互為倒數(shù),且過點

1)求橢圓C的方程;

2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.

求證:直線MN的斜率為定值;

MON面積的最大值(其中O為坐標原點).

【答案】12

【解析】試題分析:(1)先求雙曲線離心率得橢圓離心率,再將點坐標代入橢圓方程,解方程組得,(2①先根據(jù)點斜式得直線方程,再與橢圓方程聯(lián)立解得坐標,根據(jù)直線與圓相切,得斜率相反,同理可得最后根據(jù)斜率公式求斜率,②設直線MN方程,根據(jù)原點到直線距離得高,與橢圓方程聯(lián)立方程組結合韋達定理以及弦長公式得底邊邊長,最后代入三角形面積公式,利用基本不等式求最值.

試題解析:1)可得,設橢圓的半焦距為,所以

因為C過點,所以,又,解得,

所以橢圓方程為.             

2 顯然兩直線的斜率存在,設為, ,

由于直線與圓相切,則有,

直線的方程為 聯(lián)立方程組

消去,得,  

因為為直線與橢圓的交點,所以,

同理,當與橢圓相交時, ,

所以,而

所以直線的斜率.       

設直線的方程為,聯(lián)立方程組消去

所以,

原點到直線的距離,        

面積為,

當且僅當時取得等號.經(jīng)檢驗,存在),使得過點的兩條直線與圓相切,且與橢圓有兩個交點M,N

所以面積的最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知橢圓W:+=1(a>b>0),直線=軸,軸的交點分別是橢圓W的焦點與頂點。

(1)求橢圓W的方程;

(2)設直線m:=kx(k≠0)與橢圓W交于P,Q兩點,過點P(,)作PC⊥軸,垂足為點C,直線交橢圓w于另一點R。

①求△PCQ面積的最大值;②求出∠QPR的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4a2=2S3;等比數(shù)列{bn}滿足b1a2b2a4.

(1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;

(2)若a1=2,設cn,求數(shù)列{cn}的前n項和Tn;

(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】科學研究表明:人類對聲音有不的感覺,這與聲音的強度單位:瓦平方米有關在實際測量時,常用單位:分貝來表示聲音強弱的等級,它與聲音的強度I滿足關系式:是常數(shù),其中平方米如風吹落葉沙沙聲的強度平方米,它的強弱等級分貝.

已知生活中幾種聲音的強度如表:

聲音來源

聲音大小

風吹落葉沙沙聲

輕聲耳語

很嘈雜的馬路

強度平方米

強弱等級分貝

10

m

90

am的值

為了不影響正常的休息和睡眠,聲音的強弱等級一般不能超過50分貝,求此時聲音強度I的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的圖象兩相鄰對稱軸之間的距離是,若將的圖象向右平移個單位長度,所得圖象對應的函數(shù)為奇函數(shù).

1)求的解析式;

2)求的對稱軸及單調(diào)增區(qū)間;

3)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=,設bn=,n∈N*。

(1)證明{bn}是等比數(shù)列(指出首項和公比);

(2)求數(shù)列{log2bn}的前n項和Tn。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系,已知曲線的參數(shù)方程為,(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系曲線的極坐標方程為.

(1)求曲線的極坐標方程及曲線的直角坐標方程;

(2)已知曲線交于兩點,點且垂直于的直線與曲線交于兩點,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的上頂點為,離心率為. 拋物線軸所得的線段長為的長半軸長.

(1)求橢圓的方程;

(2)過原點的直線相交于兩點,直線分別與相交于兩點

證明:以為直徑的圓經(jīng)過點

的面積分別是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,,為全等的正三角形,且平面平面,平面平面,.

證明:;

求點到平面的距離.

查看答案和解析>>

同步練習冊答案