【題目】(題文)已知等差數(shù)列{an}的首項(xiàng)a1≠0,前n項(xiàng)和為Sn,且S4+a2=2S3;等比數(shù)列{bn}滿足b1=a2,b2=a4.
(1)求證:數(shù)列{bn}中的每一項(xiàng)都是數(shù)列{an}中的項(xiàng);
(2)若a1=2,設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn;
(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
【答案】(1)見解析.(2)-1.
【解析】試題分析:
(1)由題意可得在等差數(shù)列{an}中,an=na1,根據(jù)b1=2a1,b2=4a1可得等比數(shù)列的公比為q=2,故bn=2n·a1,由于2n∈N*,故數(shù)列{bn}中的每一項(xiàng)都是{an}中的項(xiàng).(2)由(1)可得,故用列項(xiàng)相消法求和即可.(3)結(jié)合(2)可得f(n)=log3Tn=log3,由對(duì)數(shù)的運(yùn)算性質(zhì)可得f(1)+f(2)+…+f(n) ,令,作差可得單調(diào)遞減,從而可得所求最值.
試題解析:
(1)設(shè)等差數(shù)列{an}的公差為d,
由S4+a2=2S3,得4a1+6d+a1+d=6a1+6d,
∴a1=d,
∴an=a1+(n-1)d=na1,
由題意得b1=2a1,b2=4a1,
∴等比數(shù)列{bn}的公比q==2,
∴bn=2a1·2n-1=2n·a1,
∵2n∈N*,
∴數(shù)列{bn}中的每一項(xiàng)都是{an}中的項(xiàng).
(2)當(dāng)a1=2時(shí),bn=2n+1,
∴
∴Tn=c1+c2+…+cn
=2[(-)+(-)+…+(-)]=2(-)=.
(3)由題意得f(n)=log3Tn=log3,
∴f(1)+f(2)+…+f(n)=log3+log3+…+log3=log3(··…·)
令,
則,
∴,故單調(diào)遞減,
∴.
∴f(1)+f(2)+…+f(n)的最大值為-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 0 | 5 | ﹣5 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將y=f(x)圖象上所有點(diǎn)向左平移θ(θ>0)個(gè)單位長度,得到y=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為(,0),求θ的最小值.
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長.若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測成績,現(xiàn)有甲、乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲、乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)現(xiàn)從甲、乙兩位同學(xué)的不低于140分的成績中任意選出2個(gè)成績,記事件為“其中2個(gè)成績分別屬于不同的同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓,過點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn).
(Ⅰ)求的軌跡方程;
(Ⅱ)當(dāng)(不重合)時(shí),求的方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是橢圓()的左、右焦點(diǎn),過作軸的垂線與交于、
兩點(diǎn), 與軸交于點(diǎn), ,且, 為坐標(biāo)原點(diǎn).
(1)求的方程;
(2)設(shè)為橢圓上任一異于頂點(diǎn)的點(diǎn), 、為的上、下頂點(diǎn),直線、分別交軸于點(diǎn)、.若直線與過點(diǎn)、的圓切于點(diǎn).試問: 是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達(dá)式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)不等實(shí)根,求常數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點(diǎn).
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點(diǎn).
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且(是常數(shù),),.
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com