【題目】如圖所示的幾何體中,,為全等的正三角形,且平面平面,平面平面,.
證明:;
求點到平面的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的離心率與雙曲線的離心率互為倒數(shù),且過點.
(1)求橢圓C的方程;
(2)過作兩條直線與圓相切且分別交橢圓于M、N兩點.
① 求證:直線MN的斜率為定值;
② 求△MON面積的最大值(其中O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項和為,且(是常數(shù),),.
(1)求的值及數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點A(1,0)和點B(﹣1,0),,且∠AOC=x,其中O為坐標(biāo)原點.
(1)若x=,設(shè)點D為線段OA上的動點,求的最小值;
(2)若R,求的最大值及對應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的右準(zhǔn)線方程為,右頂點為.
求橢圓C的方程;
若M,N是橢圓C上不同于A的兩點,點P是線段MN的中點.
如圖1,若為等腰直角三角形且直角頂點P在x軸上方,求直線MN的方程;
如圖2所示,點Q是線段NA的中點,若且的角平分線與x軸垂直,求直線AM的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在處的切線與平行.
求的單調(diào)區(qū)間;
若存在區(qū)間,使在上的值域是,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支球隊進行總決賽,比賽采用七場四勝制,即若有一隊先勝四場,則此隊為總冠軍,比賽就此結(jié)束.因兩隊實力相當(dāng),每場比賽兩隊獲勝的可能性均為.據(jù)以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.
(I)求總決賽中獲得門票總收入恰好為300萬元的概率;
(II)設(shè)總決賽中獲得門票總收入為X,求X的均值E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不共線的向量滿足, , .
(1)若與垂直,求的值;
(2)當(dāng)時,若存在兩個不同的使得成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E的方程為 (a>b>0),點O為坐標(biāo)原點,點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點M在線段AB上,滿足BM=2MA,直線OM的斜率為.
(1)求E的離心率e;
(2)設(shè)點C的坐標(biāo)為(0,-b),N為線段AC的中點,點N關(guān)于直線AB的對稱點的縱坐標(biāo)為,求E的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com