設直線是曲線的一條切線,.
(1)求切點坐標及的值;
(2)當時,存在,求實數(shù)的取值范圍.
(1)切點或者切點,;(2).

試題分析:(1)先設切點,然后依題意計算出,由,計算出切點的橫坐標,代入切線的方程,可得切點的縱坐標,最后再將切點的坐標代入曲線C的方程計算得的值;(2)結合(1)中求出的,確定,設,然后將存在使成立問題,轉化為,進而求出,分、、三種情況討論函數(shù)上的單調(diào)性,確定,相應求解不等式,即可確定的取值范圍.
試題解析:(1)設直線與曲線相切于點
,解得
代入直線方程,得切點坐標為
切點在曲線上,∴
綜上可知,切點,或者切點,          5分
(2)∵,∴,設,若存在使成立,則只要              7分

①當
是增函數(shù),不合題意              8分
②若
,得,∴上是增函數(shù)
,解得,∴上是減函數(shù)
,,解得               10分
③若,
,解得
,∴上是增函數(shù)
,不等式無解,∴不存在                12分
綜上可得,實數(shù)的取值范圍為                      13分.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù).
(1)求函數(shù)的圖像在點處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)若,為整數(shù),且當時,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的極小值;
(2)當時,過坐標原點作曲線的切線,設切點為,求實數(shù)的值;
(3)設定義在上的函數(shù)在點處的切線方程為時,若內(nèi)恒成立,則稱為函數(shù)的“轉點”.當時,試問函數(shù)是否存在“轉點”.若存在,請求出“轉點”的橫坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)當時,求函數(shù)處的切線方程;
(2)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(3)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線yx3在點P處的切線的斜率為3,則P點的坐標為 (  ).
A.(-2,-8) B.(-1,-1),(1,1)
C.(2,8)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點(1,0)處的切線與坐標軸所圍三角形的面積等于         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點(0,-2)向曲線作切線,則切線方程為                     。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線(其中)在處的切線方程為     

查看答案和解析>>

同步練習冊答案