【題目】用數(shù)學歸納法證明:當n∈N*時,1+22+33+…+nn<(n+1)n.

【答案】見解析

【解析】

根據數(shù)學歸納法證明步驟,逐步證明即可。

(1)n=1時,左邊=1,右邊=2,1<2,不等式成立.

(2)假設當n=k(kN*)時不等式成立,即1+22+33+…+kk<(k+1)k;

那么,當n=k+1時,左邊=1+22+33+…+kk+(k+1)k1<(k+1)k+(k+1)k1=(k+1)k(k+2)<(k+2)k1=[(k+1)+1]k1=右邊,即左邊<右邊,

即當n=k+1時不等式也成立.

根據(1)(2)可知,不等式對任意nN*都成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是大于的常數(shù).

1求函數(shù)的定義域;

2時, 求函數(shù)上的最小值;

3若對任意恒有,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設復數(shù) z=i(1+i)(其中 i 是虛數(shù)單位),則復數(shù) z 對應的點位于(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱側面底面,,底面為直角梯形,其中,中點

(1)求證:平面;

(2)求銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓與過點且斜率為的直線交于兩點.

(1)若線段的中點為,求的值;

(2)在軸上是否存在一個定點,使得的值為常數(shù),若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經過點A1,2),并且在兩坐標軸上的截距的絕對值相等的直線共有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P225,Q3>2 ,則下列判斷正確的是 (

A. “PQ”為假,Q”為假 B. “PQ”為真,Q”為假

C. “PQ”為假,P”為假 D. “PQ”為真,“PQ”為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),圖象與軸交于點異于原點),處的切線為圖象與軸交于點且在該點處的切線為,并且平行.

)求的值;

)已知實數(shù),求函數(shù)的最小值;

)令,給定,對于兩個大于1的正數(shù),存在實數(shù)滿足:,并且使得不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ax3-3x在區(qū)間(-1,1)上為單調減函數(shù),則a的取值范圍是________

查看答案和解析>>

同步練習冊答案