若函數(shù)f(x)=1+
2x+1
2x+1
+sinx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n=( 。
A、0B、1C、2D、4
考點(diǎn):函數(shù)的值域,函數(shù)的定義域及其求法
專題:
分析:本題可以先構(gòu)造奇函數(shù)g(x)=
2x+1
2x+1
+sinx-1,由于奇函數(shù)圖象的對(duì)稱性,得到函數(shù)值域的對(duì)稱,再對(duì)應(yīng)研究函數(shù)f(x)的值域,得到本題結(jié)論.
解答: 解:記g(x)=
2x+1
2x+1
+sinx-1,
∴g(-x)=
21-x
2-x+1
+sin(-x)-1

=
2
1+2x
-sinx-1
,
∴g(-x)+g(x)=
2x+1
2x+1
+sinx-1+
2
1+2x
-sinx-1
=0,
∴g(-x)=-g(x).
∴函數(shù)g(x)在奇函數(shù),
∴函數(shù)g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,
∴函數(shù)g(x)在區(qū)間[-k,k](k>0)上的最大值記為a,(a>0),
則g(x)在區(qū)間[-k,k](k>0)上的最小值為-a,
∴-a≤
2x+1
2x+1
+sinx-1≤a,
∴-a+2≤
2x+1
2x+1
+sinx+1≤a+2,
∴-a+2≤f(x)≤a+2,
∵函數(shù)f(x)=1+
2x+1
2x+1
+sinx在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],
∴m=-a+2,n=a+2,
∴m+n=4.
故選D.
點(diǎn)評(píng):本題考查了奇函數(shù)性的對(duì)稱懷和值域,還考查了構(gòu)造法,本題難度適中,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點(diǎn)分別A、B,橢圓過(guò)點(diǎn)(0,1)且離心率e=
3
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C上異于A、B兩點(diǎn)的任意一點(diǎn)P作PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q,且PQ=PH,過(guò)點(diǎn)B作直線l⊥x軸,連結(jié)AQ并延長(zhǎng)交直線l于點(diǎn)M,線段MB的中點(diǎn)記為點(diǎn)N.
①求點(diǎn)Q所在曲線的方程;
②試判斷直線QN與以AB為直徑的圓O的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-
b
x
,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.則曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)正數(shù)a,b,可按規(guī)則c=an+a+b擴(kuò)充為一個(gè)新數(shù)c,在a,b,c三個(gè)數(shù)中取兩個(gè)較大的數(shù),按上述規(guī)則再擴(kuò)充得到一個(gè)新數(shù),依次下去,將每擴(kuò)充一次得到一個(gè)新數(shù)稱為一次操作,若p>q>0,對(duì)數(shù)p和數(shù)q經(jīng)過(guò)10次操作后,擴(kuò)充所得的數(shù)為(p+1)m(q+1)n-1,其中m,n是正整數(shù),則m+n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式,
理科:(2)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn
m-2005
2
對(duì)一切n∈N+成立,求最小整數(shù)m.
文科:(2)令bn=
1
anan+1
(n≥1),求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在湖南某所示范性高中的學(xué)生中隨機(jī)抽取50名學(xué)生,得到下表,那么下列判斷正確的是(  )
喜歡數(shù)學(xué)課程不喜歡數(shù)學(xué)課程
1310
720
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d;
臨界值表:
P(K2≥k00.1000.0500.0250.010
    k02.7063.8415.0246.635
A、約有5%的把握認(rèn)為“性別與喜歡數(shù)學(xué)課程之間有關(guān)系”
B、約有99%的把握認(rèn)為“性別與喜歡數(shù)學(xué)課程之間有關(guān)系”
C、在犯錯(cuò)誤的概率不超過(guò)0.050的前提下認(rèn)為“性別與喜歡數(shù)學(xué)課程之間有關(guān)系”
D、在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“性別與喜歡數(shù)學(xué)課程之間有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,
e
為單位向量,當(dāng)向量
a
,
e
的夾角為
3
時(shí),
a
+
e
a
上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
3
kx3+
1
2
x2
+5,且-4≤f′(2)-f′(1)≤4,則正整數(shù)k為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)和g(x)都是奇函數(shù),且F(x)=af(x)+bg(x)+2在區(qū)間(0,+∞)上有最大值5,則F(x)在(-∞,0)上( 。
A、有最小值-5
B、有最大值-5
C、有最小值-1
D、有最大值-3

查看答案和解析>>

同步練習(xí)冊(cè)答案