【題目】一個計算裝置有兩個數(shù)據(jù)輸入端口I,II與一個運算結(jié)果輸出端口III,當(dāng)I,II分別輸入正整數(shù)時,輸出結(jié)果記為且計算裝置運算原理如下:

I,II分別輸入

I輸入固定的正整數(shù)II輸入的正整數(shù)增大則輸出的結(jié)果比原來增大

II輸入I輸入正整數(shù)增大則輸出結(jié)果為原來的倍.則(1) = 為正整數(shù));(2)1fm,1=__,(2)若由fm,1)得出fm,n),則滿足fm,n=30的平面上的點(m,n)的個數(shù)是__

【答案】

【解析】由題意可得,f(m,1)=3f(m﹣1,1)=×f(m﹣2,1)=×f(1,1)=

f(m,n)=f(m,n﹣1)+3=f(m,n﹣2)+3×2

=f(m,1)+3(n﹣1)=+3(n﹣1)

30=+3(n﹣1)且m,n為正整數(shù)可得, .

故填,3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線為曲線關(guān)于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,DAC的中點,四邊形BDEF是菱形,平面平面ABC,

若點M是線段BF的中點,證明:平面AMC;

求平面AEF與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的最大值是最小值是

A. 有關(guān),且與有關(guān) B. 有關(guān),但與無關(guān)

C. 無關(guān),且與無關(guān) D. 無關(guān),但與有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心Mx軸上,半徑為,直線被圓M截得的弦長為,且圓心M在直線l的上方.

1)求圓的方程;

2)設(shè),若圓M的內(nèi)切圓,求AC,BC邊所在直線的斜率(用t表示);

3)在(2)的條件下求的面積S的最大值及對應(yīng)的t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解畢業(yè)班學(xué)業(yè)水平考試學(xué)生的數(shù)學(xué)考試情況,抽取了該校100名學(xué)生的數(shù)學(xué)成績,將所有數(shù)據(jù)整理后,畫出了樣頻率分布直方圖(所圖所示),若第1組第9組的頻率各為x.

1)求x的值,并估計這次學(xué)業(yè)水平考試數(shù)學(xué)成績的眾數(shù);

2)若全校有1500名學(xué)生參加了此次考試,估計成績在[80,100)分內(nèi)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖在三棱錐中, 分別為棱的中點,已知,

求證(1)直線平面

(2)平面 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)曲線在點處的切線與直線垂直.

注:為自然對數(shù)的底數(shù).

1若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

2求證:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·金華調(diào)研)如圖,ABBEBC2AD2,且ABBEDAB60°,ADBCBEAD.

(1)求證:平面ADE⊥平面BDE;

(2)求直線AD與平面DCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案