【題目】如圖,在四棱錐中,平面,點(diǎn)中點(diǎn),底面為梯形,,.

(1)證明:平面;

(2)若四棱錐的體積為4,求點(diǎn)到平面的距離.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)取中點(diǎn),連接,根據(jù)平行四邊形的性質(zhì),證得,再利用線面平行的判定定理,即可證得平面.

(2)設(shè),利用四棱錐的體積,求得,又由平面知,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過(guò),證得平面,即可求得答案。

(1)如圖所示,取中點(diǎn),連接,

中點(diǎn),∴,,

,,∴,,

∴四邊形為平行四邊形,∴.

平面,平面,∴平面.

(2)設(shè),則,

是直角梯形,平面知,

則四棱錐的體積為,解得

平面知,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,

過(guò),垂足為,

平面,得,

,∴平面,

平面,∴,∴平面.

,

到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幼兒園舉辦“yue”主題系列活動(dòng)——“悅”動(dòng)越健康親子運(yùn)動(dòng)打卡活動(dòng),為了解小朋友堅(jiān)持打卡的情況,對(duì)該幼兒園所有小朋友進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表:

打卡天數(shù)

17

18

19

20

21

男生人數(shù)

3

5

3

7

2

女生人數(shù)

3

5

5

7

3

1)根據(jù)上表數(shù)據(jù),求該幼兒園男生平均打卡的天數(shù);

2)若從打卡21天的小朋友中任選2人交流心得,求選到男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線 .以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù),若,,使得不等式成立,則實(shí)數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上任意一點(diǎn)到其焦點(diǎn)的距離的最小值為1.,為拋物線上的兩動(dòng)點(diǎn)(、不重合且均異于原點(diǎn)),為坐標(biāo)原點(diǎn),直線、的傾斜角分別為,.

1)求拋物線方程;

2)若,求證直線過(guò)定點(diǎn);

3)若為定值),探求直線是否過(guò)定點(diǎn),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)點(diǎn)作斜率為的直線與拋物線交于不同的兩點(diǎn),

1)求的取值范圍;

2)若為直角三角形,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,左頂點(diǎn)為.過(guò)點(diǎn)作直線交橢圓于另一點(diǎn),交軸于點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn).

1)求橢圓的方程:

2)已知的中點(diǎn),是否存在定點(diǎn),對(duì)任意的直線,恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在說(shuō)明理由;

3)過(guò)點(diǎn)作直線的平行線與橢圓相交,為其中一個(gè)交點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案