【題目】某學校隨機抽取部分學生調(diào)查其上學路上所需時間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學路上所需時間的范圍為,樣本數(shù)據(jù)分組為,,.

1)求直方圖中a的值;

2)如果上學路上所需時間不少于40分鐘的學生可申請在學校住宿,若招收學生1200人,請估計所招學生中有多少人可以申請住宿;

3)求該校學生上學路上所需的平均時間.

【答案】12276人(332.8

【解析】

1)由直方圖中頻率和(小矩形面積和)為1可求得;

2)求出上學路上所需時間不少于40分鐘的學生的頻率,然后乘以1200可得;

(3)用各小矩形中點估算為這一組的均值,然后乘以頻率,并相加可得.

解:(1)由,

解得.

2上學路上所需時間不少于40分鐘的學生可申請在學校住宿,招收學生1200人,

估計所招學生中有可以申請住宿人數(shù)為:

.

3)該校學生上學路上所需的平均時間為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學的行政主管部門從該大學隨機抽取100名大學生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[8590],得到頻率分布直方圖如下圖:

1)求實數(shù)的值;

2)若從第四組、第五組的學生中按組用分層抽樣的方法抽取6名學生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從個銷售數(shù)據(jù)中任取個子,求“好數(shù)據(jù)”個數(shù)的分布列和數(shù)學期望.

(參考公式:線性回歸方程中的估計值分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為矩形,,的中點.

(1)證明:;

(2)設(shè),三棱錐的體積,求二面角DAEC的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)經(jīng)過點,直線與拋物線有兩個不同的交點,直線軸于,直線軸于.

(1)若直線過點,求直線的斜率的取值范圍;

(2)若直線過點,設(shè),,求的值;

(3)若直線過拋物線的焦點,交軸于點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點,圓心在線段上.

(1)當為何值時,點恰好在路面中線上?

(2)記圓心在路面上的射影為,且在線段上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若方程f(x)=m有4個不同的實根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面平面ABC,P、P在平面ABC的同側(cè),二面角的平面角為鈍角,Q到平面ABC的距離為是邊長為2的正三角形,,.

1)求證:面平面PAB

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點,證明:.

查看答案和解析>>

同步練習冊答案