【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.

(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?

(2)記圓心在路面上的射影為,且在線段上,求的最大值.

【答案】(1)當(dāng)時(shí),點(diǎn)在路面中線上;(2)

【解析】

(1)以O(shè)為原點(diǎn),以O(shè)A所在直線為y軸建立平面直角坐標(biāo)系,求出PQ的方程,設(shè)C(a,b),根據(jù)CA=CP=r列方程組可得出a,b的值,從而求出r的值;

(2)用a表示出直線PQ的斜率,得出PQ的方程,求出Q的坐標(biāo),從而可得出|HQ|關(guān)于a的函數(shù),根據(jù)a的范圍和基本不等式得出|HQ|的最大值.

(1)以O(shè)為原點(diǎn),以O(shè)A所在直線為y軸建立平面直角坐標(biāo)系,則A(0,8),P(2,10),Q(7,0),

∴直線PQ的方程為2x+y﹣14=0.設(shè)C(a,b),則,

兩式相減得:a+b﹣10=0,又2a+b﹣14=0,解得a=4,b=6,

.∴當(dāng)時(shí),點(diǎn)Q恰好在路面中線上.

(2)由(1)知a+b﹣10=0,

當(dāng)a=2時(shí),燈罩軸線所在直線方程為x=2,此時(shí)HQ=0.

當(dāng)a≠2時(shí),燈罩軸線所在方程為:y﹣10=(x﹣2),

令y=0可得x=12﹣,即Q(12﹣,0),

∵H在線段OQ上,∴12﹣≥a,解得2≤a≤10.

∴|HQ|=12﹣﹣a=12﹣(+a)≤12﹣=12﹣

當(dāng)且僅當(dāng)=a即a=時(shí)取等號(hào).∴|HQ|的最大值為(12﹣)m.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有臺(tái)大型機(jī)器,在個(gè)月中,臺(tái)機(jī)器至多出現(xiàn)次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺(tái)機(jī)器的能力,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果,再從這批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.

(1)求這批產(chǎn)品通過檢驗(yàn)的概率;

(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為(單位:元),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機(jī)抽取部分學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)制成頻率分布直方圖(如圖),若上學(xué)路上所需時(shí)間的范圍為,樣本數(shù)據(jù)分組為,,,,.

1)求直方圖中a的值;

2)如果上學(xué)路上所需時(shí)間不少于40分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若招收學(xué)生1200人,請(qǐng)估計(jì)所招學(xué)生中有多少人可以申請(qǐng)住宿;

3)求該校學(xué)生上學(xué)路上所需的平均時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在數(shù)列{an}中,設(shè)a1為首項(xiàng),其前n項(xiàng)和為Sn,若對(duì)任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3

(1)設(shè)數(shù)列{an}為等差數(shù)列,且公差為d,求的取值范圍;

(2)設(shè)數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)?/span>的函數(shù),若同時(shí)滿足下列條件:

內(nèi)單調(diào)遞增或單調(diào)遞減;

②存在區(qū)間,使上的值域?yàn)?/span>

那么把叫閉函數(shù).

(1)求閉函數(shù)符合條件②的區(qū)間;

(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;

(3)是閉函數(shù),求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,且對(duì)任意,成等差數(shù)列,其公差為.

(1)若,求的值;

(2)若,證明成等比數(shù)列();

(3)若對(duì)任意成等比數(shù)列,其公比為,設(shè),證明數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.

(1)求橢圓的方程;

(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案