【題目】一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為.如果,再從這批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果,再從這批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.

(1)求這批產(chǎn)品通過檢驗(yàn)的概率;

(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對(duì)這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為(單位:元),求的分布列及數(shù)學(xué)期望.

【答案】(1) (2)分布列見解析,

【解析】

(1)對(duì)于第一種情況,先從這批產(chǎn)品中任取四個(gè)產(chǎn)品,求出三個(gè)為優(yōu)質(zhì)品的概率,那么需要再從該類產(chǎn)品中抽取四個(gè)產(chǎn)品,再求出四個(gè)都未為優(yōu)質(zhì)品的概率;對(duì)于第二種情況,求出第一次取出的四件產(chǎn)品都為優(yōu)質(zhì)品的概率以及第二次取出的一件產(chǎn)品為優(yōu)質(zhì)品的概率,則根據(jù)獨(dú)立事件與互斥事件的概率公式可得結(jié)果;(2)若對(duì)該產(chǎn)品進(jìn)行檢驗(yàn),最后花費(fèi)的檢驗(yàn)費(fèi)用有三種情況,即為400元,500元或800元,可分別根據(jù)題目條件求隨機(jī)變量對(duì)應(yīng)的概率,利用期望公式求出所需花費(fèi)費(fèi)用的數(shù)學(xué)期望.

(1)設(shè)第一次取出的4件產(chǎn)品中恰有3件優(yōu)質(zhì)品為事件,

第一次取出的4件產(chǎn)品全是優(yōu)質(zhì)品為事件

第二次取出的4件產(chǎn)品全是優(yōu)質(zhì)品為事件,第二次取出的1件產(chǎn)品是優(yōu)質(zhì)品為事件,

這批產(chǎn)品通過檢驗(yàn)為事件,依題意有,且互斥,

所以

(2)可能的取值為400,500,800,并且,

,故的分布列如下:

400

500

800

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從景點(diǎn)下山至有兩種路徑:一種是從沿直線步行到,另一種是先從乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從下山,甲沿勻速步行,速度為米/分鐘.在甲出發(fā)分鐘后,乙從乘纜車到,在處停留分鐘后,再從勻速步行到.已知纜車從分鐘, 長為米,若,.為使兩位游客在處互相等待的時(shí)間不超過分鐘,則乙步行的速度(米/分鐘)的取值范圍是 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。

1)求直線的普通方程和圓的直角坐標(biāo)方程;

2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競爭力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:

單價(jià)(千元)

銷量(百件)

已知.

(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程

(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(參考公式:線性回歸方程中的估計(jì)值分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),直線,為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且滿足

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為矩形,,的中點(diǎn).

(1)證明:;

(2)設(shè),三棱錐的體積,求二面角DAEC的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣弧.路燈采用錐形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.

(1)當(dāng)為何值時(shí),點(diǎn)恰好在路面中線上?

(2)記圓心在路面上的射影為,且在線段上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)設(shè)函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線與函數(shù)的圖象相切于兩個(gè)不同的點(diǎn)?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案