【題目】已知△ABC的三邊BCCA,AB的中點(diǎn)分別是D(5,3),E(42),F(11).

1)求△ABC的邊AB所在直線的方程及點(diǎn)A的坐標(biāo);

2)求△ABC的外接圓的方程.

【答案】1xy=02(x8)2+(y+6)2=100

【解析】

1)設(shè)坐標(biāo),由中點(diǎn)坐標(biāo)公式列出方程,可求出坐標(biāo),進(jìn)而取出直線方程;

2)分別求出的垂直平分線方程,聯(lián)立求出交點(diǎn)坐標(biāo),即為外接圓圓心坐標(biāo),求出半徑,可得出結(jié)論.

1)設(shè)A(x,y),B(ab),C(mn),則.

解得,A (0,0),B(2,2),C(84).

∴邊AB所在直線的方程:xy=0.

2)由(1)得的垂直平分線方程為,

的垂直平分線方程為

聯(lián)立,解得,

所以的外接圓的圓心

半徑為,

∴△ABC的外接圓方程為(x8)2+(y+6)2=100.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國,緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績分為六段,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競(jìng)賽成績?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,,數(shù)列滿足,且

I)求數(shù)列,的通項(xiàng)公式;

II)令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是函數(shù)的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點(diǎn),且.

(參考數(shù)據(jù):,其中為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為).

(1)寫出直線的直角坐標(biāo)方程與曲線的普通方程;

(2)平移直線使其經(jīng)過曲線的焦點(diǎn),求平移后的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級(jí)2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生講行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

性別

選擇物理

選擇歷史

總計(jì)

男生

50

女生

30

總計(jì)

(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對(duì)“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南通風(fēng)箏是江蘇傳統(tǒng)手工藝品之一.現(xiàn)用一張長2 m,寬1.5 m的長方形牛皮紙ABCD裁剪風(fēng)箏面,裁剪方法如下:分別在邊ABAD上取點(diǎn)E,F,將三角形AEF沿直線EF翻折到處,點(diǎn)落在牛皮紙上,沿,裁剪并展開,得到風(fēng)箏面,如圖1.

(1)若點(diǎn)E恰好與點(diǎn)B重合,且點(diǎn)BD上,如圖2,求風(fēng)箏面的面積;

(2)當(dāng)風(fēng)箏面的面積為時(shí),求點(diǎn)AB距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案