【題目】已知函數f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3;
(2)如果x∈R,使得f(x)<2成立,求實數a的取值范圍.
【答案】
(1)解:若a=﹣1,f(x)≥3,
即為|x﹣1|+|x+1|≥3,
當x≤﹣1時,1﹣x﹣x﹣1≥3,即有x≤﹣ ;
當﹣1<x<1時,1﹣x+x+1=2≥3不成立;
當x≥1時,x﹣1+x+1=2x≥3,解得x≥ .
綜上可得,f(x)≥3的解集為(﹣∞,﹣ ]∪[ ,+∞)
(2)解:x∈R,使得f(x)<2成立,
即有2>f(x)min,
由函數f(x)=|x﹣1|+|x﹣a|≥|x﹣1﹣x+a|=|a﹣1|,
當(x﹣1)(x﹣a)≤0時,取得最小值|a﹣1|,
則|a﹣1|<2,
即﹣2<a﹣1<2,
解得﹣1<a<3.
則實數a的取值范圍為(﹣1,3)
【解析】(1)由題意可得|x﹣1|+|x+1|≥3,討論當x≤﹣1時,當﹣1<x<1時,當x≥1時,去掉絕對值解不等式,最后求并集;(2)由題意可得2>f(x)min , 運用絕對值不等式的性質,可得f(x)的最小值,再由絕對值不等式的解法,可得a的范圍.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數學 來源: 題型:
【題目】以下四個命題,其中正確的個數有( )
①由獨立性檢驗可知,有的把握認為物理成績與數學成績有關,某人數學成績優(yōu)秀,則他有99%的可能物理優(yōu)秀.
②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;
③在線性回歸方程中,當解釋變量每增加一個單位時,預報變量平均增加0.2個單位;
④對分類變量與,它們的隨機變量的觀測值來說, 越小,“與有關系”的把握程度越大.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調查研究中,發(fā)現其在40分鐘的一節(jié)課中,注意力指數與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數圖象的一部分,當時,曲線是函數圖象的一部分.根據專家研究,當注意力指數大于80時學習效果最佳.
(1)試求的函數關系式;
(2)教師在什么時段內安排核心內容,能使得學生學習效果最佳?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(Ⅰ)當時,求函數的單調區(qū)間;
(Ⅱ)若在區(qū)間上存在不相等的實數,使成立,求的取值范圍;
(Ⅲ)若函數有兩個不同的極值點,,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=2sin(ωx+ )(ω>0)的圖象向右平移 個單位,得到函數y=g(x)的圖象,若y=g(x)在[﹣ , ]上為增函數,則ω的最大值為( )
A.3
B.2
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列結論中錯誤的是( 。
A.設命題p:?x∈R,使+x+2<0,則¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,則“x=y”是“xy≤取到等號”的充要條件
C.已知命題p和q,若p∧q為假命題,則命題p與q都為假命題
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,某公路 一側有一塊空地 ,其中 , .當地政府擬在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(M,N不與A,B重合,M在A,N之間),且∠MON=30°.
(1)若M在距離A點2 km處,求點M,N之間的距離;
(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能。嚧_定M的位置,使△OMN的面積最小,并求出最小面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com