【題目】已知函數(shù).
(Ⅰ)若函數(shù)圖象在點處的切線方程為,求的值;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若,,且對任意的,恒成立,求實數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】
試題分析:(Ⅰ)利用導(dǎo)數(shù)的幾何意義,先對進(jìn)行求導(dǎo),再利用,可求出的值;(Ⅱ)求出的表達(dá)式,再分別對兩種進(jìn)行討論,可得到函數(shù)的極值;(Ⅲ)函數(shù)恒成立問題,兩種思路,一種是,另一種是用參變分離的方法求解.
試題解析:(Ⅰ),∴.
函數(shù)圖象在點處的切線方程為∴.
(Ⅱ)由題意可知,函數(shù)的定義域為,
.
當(dāng)時,,,為增函數(shù),,為減函數(shù),所以,.
當(dāng)時,,,為減函數(shù),,,為增函數(shù),所以,.
(Ⅲ)“對任意的,恒成立”等價于“當(dāng)時,對任意的,成立”,當(dāng)時,由(Ⅱ)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以的最小值為,,當(dāng)時,,時,,顯然不滿足,
當(dāng)時,令得,,,
(ⅰ)當(dāng),即時,在上,所以在單調(diào)遞增,所以,只需,得,所以.
(ⅱ)當(dāng),即時,在,,單調(diào)遞增,在,,單調(diào)遞減,所以,
只需,得,所以.
(ⅲ)當(dāng),即時,顯然在上,單調(diào)遞增,,不成立,
綜上所述,的取值范圍是.
(用分離參數(shù)做答酌情給分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;
(2)主持人從隊所有選手成績中隨機(jī)抽2個,求至少有一個為“晉級”的概率;
(3)主持人從兩隊所有選手成績分別隨機(jī)抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若對任意,都有成立,求的值值范圍;
(2)若先將的圖象上每個點縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移個單位得到函數(shù)的圖象,求函數(shù)在區(qū)間內(nèi)的所有零點之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:()的短軸長為,點在C上,平行于OM的直線交橢圓C于不同的兩點A,B.
(1)求橢圓的方程;
(2)證明:直線MA,MB與軸總圍成等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。
(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;
(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足:.
(1)求;
(2)設(shè),求數(shù)列的通項公式;
(3)設(shè),不等式恒成立時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校名教師參加我縣“六城”同創(chuàng)“干部職工進(jìn)網(wǎng)絡(luò),服務(wù)群眾進(jìn)社區(qū)”活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:
上表是年齡的頻數(shù)分布表.
(1)求正整數(shù)的值;
(2)根據(jù)頻率分布直方圖估計我校這名教師年齡的中位數(shù)和平均數(shù);
(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面, , , ,平面平面.
(Ⅰ)求證: ;
(Ⅱ)若為棱的中點,求證: 平面;
(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com