【題目】如圖,矩形中,,為邊的中點(diǎn).沿直線翻折成(點(diǎn)不落在底面內(nèi)).為線段的中點(diǎn),則在翻轉(zhuǎn)過(guò)程中,以下命題正確的是(

A.四棱錐體積最大值為

B.線段長(zhǎng)度是定值;

C.平面一定成立;

D.存在某個(gè)位置,使;

【答案】ABC

【解析】

平面平面時(shí),到平面的距離最大,求出這個(gè)最大值,即能求出最大體積知A是否正確,取中點(diǎn),連接,可得,平面平面,從而可得B、C是否正確,對(duì)D,假設(shè)有,推導(dǎo)出矛盾結(jié)論,說(shuō)明D錯(cuò)誤.

是等腰直角三角形,的距離是,當(dāng)平面平面時(shí),到平面的距離最大為,又,∴A正確;

中點(diǎn),連接,∵的中點(diǎn),∴,而平面平面,∴平面,

平行且相等得是平行四邊形,,同理得平面,

,∴平面平面,平面,∴平面,C正確,

在上述過(guò)程中得,又,∴為定值,B正確;

假設(shè)存在某個(gè)位置,使,取中點(diǎn),連接,顯然,而,∴平面平面,∴ ,則,但,,不可能相等,所以不可能有D錯(cuò).

故選:ABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形的邊長(zhǎng)為2,,分別為,的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,平面平面.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的離心率為,長(zhǎng)軸的左、右端點(diǎn)分別為.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于P,Q兩點(diǎn),直線,交于S,試問(wèn):當(dāng)m變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫(xiě)出這條直線的方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,EF分別是棱PC,AB的中點(diǎn).

1)求證:平面PAD

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(Ⅰ)當(dāng)曲線在點(diǎn)處的切線與直線垂直時(shí),判斷函數(shù)在區(qū)間上的單調(diào)性;

(Ⅱ)若函數(shù)在定義域內(nèi)有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,函數(shù)

1)求函數(shù)的單調(diào)遞減區(qū)間;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,點(diǎn)上.

(1)求橢圓的方程;

(2)若直線與橢圓相交于,兩點(diǎn),問(wèn)軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)的直線與橢圓交于點(diǎn),的周長(zhǎng)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若.①當(dāng)時(shí),求直線的方程;

②證明是定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案