【題目】函數(shù).

(Ⅰ)當曲線在點處的切線與直線垂直時,判斷函數(shù)在區(qū)間上的單調(diào)性;

(Ⅱ)若函數(shù)在定義域內(nèi)有兩個零點,求的取值范圍.

【答案】(Ⅰ)見解析; (Ⅱ).

【解析】

,解得,求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;Ⅱ)函數(shù)內(nèi)有兩個零點,等價于方程恰有兩個不相等的正實根,,分兩種情況討論,不合題意;時,利用導數(shù)研究函數(shù)的單調(diào)性以及函數(shù)的最值,結合零點存在定理,列不等式求解即可.

(Ⅰ)由題意知,函數(shù)的定義域為.

,解得.,

. 當時,,則恒成立,

故函數(shù)在區(qū)間上單調(diào)遞增.

(Ⅱ)函數(shù)的定義域為.若函數(shù)內(nèi)有兩個零點,即方程恰有兩個不相等的正實根,

也就是方程恰有兩個不相等的正實根.

,

時,>0恒成立,函數(shù)上是增函數(shù),

∴函數(shù)最多一個零點,不合題意,舍去.

時,由;由.

所以函數(shù)單調(diào)遞減,在內(nèi)單調(diào)遞增.

所以的最小值是,即

. ,,解得.

因為所以在內(nèi)有一個零點.

因為,所以

.

于是所以在內(nèi)有一個零點.

故實數(shù)a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】201810月考考試中,成都外國語學校共有250名高三文科學生參加考試,數(shù)學成績的頻率分布直方圖如圖:

1)如果成績大于130的為特別優(yōu)秀,這250名學生中本次考試數(shù)學成績特別優(yōu)秀的大約多少人?

2)如果這次考試語文特別優(yōu)秀的有5人,語文和數(shù)學兩科都特別優(yōu)秀的共有2人,從(1)中的數(shù)學成績特別優(yōu)秀的人中隨機抽取2人,求選出的2人中恰有1名兩科都特別優(yōu)秀的概率.

3)根據(jù)(1),(2)的數(shù)據(jù),是否有99%以上的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀?

P

0.50

0.40

0.010

0.005

0.001

k0

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若的極值點,且曲線在兩點 處的切線互相平行,這兩條切線在y軸上的截距分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,為邊的中點.沿直線翻折成(點不落在底面內(nèi)).為線段的中點,則在翻轉(zhuǎn)過程中,以下命題正確的是(

A.四棱錐體積最大值為

B.線段長度是定值;

C.平面一定成立;

D.存在某個位置,使;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程為,直線,直線 .以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

(1)求直線,的直角坐標方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點,直線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),若,,使得不等式成立,則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上任意一點到其焦點的距離的最小值為1.為拋物線上的兩動點(、不重合且均異于原點),為坐標原點,直線、的傾斜角分別為,.

1)求拋物線方程;

2)若,求證直線過定點;

3)若為定值),探求直線是否過定點,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,且橢圓C上恰有三點在集合.

1)求橢圓C的方程;

2)若點O為坐標原點,直線AB與橢圓交于A、B兩點,且滿足,試探究:點O到直線AB的距離是否為定值.如果是,請求出定值:如果不是,請明說理由.

3)在(2)的條件下,求面積的最大值.

查看答案和解析>>

同步練習冊答案