【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知

(1)設(shè)上的一點(diǎn),證明:平面平面

(2)求四棱錐的體積.

【答案】(1)見解析(2)

【解析】試題分析:

(1)證得ADBD,而面PAD⊥面ABCD,∴BD⊥面PAD,∴面MBD⊥面PAD.

(2)作輔助線POAD,PO為四棱錐PABCD的高,求得S四邊形ABCD=24.VPABCD=16.

試題解析:

(1)證明:在△ABD中,∵AD=4,BD=8,AB=4,∴AD2BD2AB2.∴ADBD.

又∵面PAD⊥面ABCD,面PAD∩面ABCDAD,BDABCD,∴BD⊥面PAD.

BDBDM,∴面MBD⊥面PAD.

(2)解:過PPOAD,

∵面PAD⊥面ABCD,∴PO⊥面ABCD,即PO為四棱錐PABCD的高.

又△PAD是邊長(zhǎng)為4的等邊三角形,∴PO=2.

在底面四邊形ABCD中,ABDC,AB=2DC,∴四邊形ABCD為梯形.

在Rt△ADB中,斜邊AB邊上的高為,此即為梯形的高.

S四邊形ABCD×=24.

VPABCD×24×2=16.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD中,AB10cm,BC8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;……;依次將寬BC 等分,每個(gè)小矩形按圖(1)分割并把個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n時(shí),最后拼成的大扇形的圓心角的大小為 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過點(diǎn)

且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一長(zhǎng)為24米的籬笆,一面利用墻(墻最大長(zhǎng)度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,

(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;

(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sinx的圖象向右平移三個(gè)單位長(zhǎng)度得到圖象C,再將圖象C上的所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍(縱坐標(biāo)不變)得到圖象C1 , 則C1的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若 , 試求f(x)在區(qū)間[﹣2,6]上的最值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱柱中, 為底面的對(duì)角線, 的中點(diǎn).

(1)求證:

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點(diǎn)M為AB1的中點(diǎn),點(diǎn)P為對(duì)角線AC1上的動(dòng)點(diǎn),點(diǎn)Q為底面ABCD上的動(dòng)點(diǎn)(點(diǎn)P、Q可以重合),則MP+PQ的最小值為(  )
A.
B.
C.
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案