A. | $(-∞,-\frac{3}{2}]∪[-1,+∞)$ | B. | $(-∞,-\frac{5}{2}]∪[-1,+∞)$ | C. | $[-\frac{5}{2},-\frac{3}{2}]$ | D. | $[-\frac{3}{2},-1]$ |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義結(jié)合直線(xiàn)的斜率公式進(jìn)行求解即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,
z=$\frac{y-4}{x}$的幾何意義是區(qū)域內(nèi)的點(diǎn)到定點(diǎn)(0,4)的斜率
由圖象知DB的斜率最大,DA的斜率最小,
由$\left\{\begin{array}{l}{x-2y=0}\\{x+2y=4}\end{array}\right.$可得A(2,1),$\left\{\begin{array}{l}{x+y=4}\\{x-2y=0}\end{array}\right.$,
可得B($\frac{8}{3}$,$\frac{4}{3}$),
∴z的最大值為z=$\frac{\frac{4}{3}-4}{\frac{8}{3}}$=-1,z的最小值為z=$\frac{1-4}{2}$=-$\frac{3}{2}$,
即,z的取值范圍是[-$\frac{3}{2}$,-1],
故選:D.
點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用直線(xiàn)斜率的幾何意義以及數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com