【題目】已知拋物線: 的焦點為,圓: .直線與拋物線交于點、兩點,與圓切于點.
(1)當(dāng)切點的坐標(biāo)為時,求直線及圓的方程;
(2)當(dāng)時,證明: 是定值,并求出該定值.
【答案】(1)圓: ,直線: (或);
或圓: ,直線: (或).(2)定值為.
【解析】試題分析:(1)將代入圓方程,即可求得的值,根據(jù)圓的方程求得圓心,再根據(jù)直線的斜率公式求得的斜率,則直線的方程斜率為,利用直線的點斜式方程,即可求得的方程;
(2)將當(dāng)垂直與軸時,求得和點坐標(biāo),利用兩點之間的斜率公式,即可求得的值;當(dāng)不垂直于軸時,由直線與圓相切,求得,將直線代入拋物線方程.利用韋達(dá)定理及弦長公式求得,利用拋物線的定義, ,即可求得是定值.
試題解析:
(1)把點代入圓的方程可得:
或.
(i)當(dāng)時,圓.∴圓心, ,
∴,∴的方程為: ,化簡得: .
(ii)當(dāng)時,圓,∴圓心, ,
∴,∴的方程為: ,化簡得: .
綜上所述,圓,直線(或);
或圓,直線(或).
(2)時,由(1)知,圓.
(i)當(dāng)垂直于軸時, , , ,
∴, .∴.
(ii)當(dāng)直線不垂直于軸時,設(shè)直線.
∵直線與圓相切.∴,∴, .
聯(lián)立直線與拋物線,得 .
∴ .
又∵, ,
∴
.
由拋物線的性質(zhì)可知, ,
∴,∴.
綜上所述, 是定值,且該定值為2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線共焦點,拋物線上的點M到y軸的距離等于,且橢圓與拋物線的交點Q滿足.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點作拋物線的切線交橢圓于、 兩點,設(shè)線段AB的中點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 表示兩條不同的直線, , , 表示三個不同的平面,給出下列四個命題:
①, , ,則;
②, , ,則;
③, , ,則;
④, , ,則
其中正確命題的序號為( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x)的表達(dá)式;
(2)設(shè)函數(shù)g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為D,若對任意x1 , x2∈D,當(dāng)x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個條件:①f(0)=0;② ;③f(1﹣x)=2﹣f(x).則 =( )
A.1
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線相切.、是橢圓的左、右頂點,直線過點且與軸垂直.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是橢圓上異于、的任意一點,作軸于點,延長到點使得,連接并延長交直線于點,為線段的中點,判斷直線與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=x2﹣2x的定義域為{0,1,2,3},那么其值域為( )
A.{y|﹣1≤y≤3}
B.{y|0≤y≤3}
C.{0,1,2,3}
D.{﹣1,0,3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在名男性駕駛員中,平均車速超過的有人,不超過的有人;在名女性駕駛員中,平均車速超過的有人,不超過的有人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為平均車速超過100與性別有關(guān);
平均車速超過人數(shù) | 平均車速不超過人數(shù) | 合計 | |
男性駕駛?cè)藬?shù) | |||
女性駕駛?cè)藬?shù) | |||
合計 |
(Ⅱ)在被調(diào)查的駕駛員中,按分層抽樣的方法從平均車速不超過的人中抽取人,再從這人中采用簡單隨機(jī)抽樣的方法隨機(jī)抽取人,求這人恰好為名男生、名女生的概率.
參考公式與數(shù)據(jù):,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={y|y=( )x , x>0},Q={x|y=lg(2x﹣x2)},則(RP)∩Q為( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com