【題目】已知函數(shù),

(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;

(Ⅱ)若,求證:,.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】分析:(I由函數(shù)的解析式可得結(jié)合,可得利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性可得上單調(diào)遞減,上單調(diào)遞增,函數(shù)的最小值為

II )若,,

上單調(diào)遞增,分類討論:

①當(dāng)上單調(diào)遞增時(shí),

②當(dāng)上單調(diào)遞減時(shí),;

③當(dāng)上先減后增時(shí),,, ,

綜上①②③得:

詳解:(I,定義域?yàn)?/span>,

由題意知,即,解得,

所以,,

、、)在上單調(diào)遞增,

可知上單調(diào)遞增,又,

所以當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞減,上單調(diào)遞增,

所以函數(shù)的最小值為

II )若,得,

上單調(diào)遞增,可知上的單調(diào)性有如下三種情形:

①當(dāng)上單調(diào)遞增時(shí),

可知,即,即,解得,

,令,則,

所以單調(diào)遞增,,所以

②當(dāng)上單調(diào)遞減時(shí),

可知,即,即,解得,

,所以

[或:令,則,

所以單調(diào)遞減,,所以;]

③當(dāng)上先減后增時(shí),得上先負(fù)后正,

所以,,即,取對(duì)數(shù)得,

可知 ,

所以

綜上①②③得:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),離心率為

(1)求的方程;

(2)過的左焦點(diǎn)且斜率不為的直線相交于,兩點(diǎn),線段的中點(diǎn)為,直線與直線相交于點(diǎn),若為等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點(diǎn)且垂直于軸的直線與雙曲線交于兩點(diǎn),為虛軸的一個(gè)端點(diǎn),且為鈍角三角形,則此雙曲線離心率的取值范圍為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只藥用昆蟲的產(chǎn)卵數(shù)與一定范圍內(nèi)的溫度有關(guān),現(xiàn)收集了該種藥用昆蟲的組觀測數(shù)據(jù)如下表:

溫度

產(chǎn)卵數(shù)/個(gè)

經(jīng)計(jì)算得: , , , , ,線性回歸模型的殘差平方和, ,其中, 分別為觀測數(shù)據(jù)中的溫差和產(chǎn)卵數(shù), .

(1)若用線性回歸方程,求關(guān)于的回歸方程(精確到);

(2)若用非線性回歸模型求得關(guān)于回歸方程為,且相關(guān)指數(shù).

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好.

(ii)用擬合效果好的模型預(yù)測溫度為時(shí)該種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù)).

附:一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計(jì)為, ;相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解中學(xué)生對(duì)交通安全知識(shí)的掌握情況,從農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)各選取100名同學(xué)進(jìn)行交通安全知識(shí)競賽.下圖1和圖2分別是對(duì)農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)參加競賽的學(xué)生成績按,,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識(shí)競賽的農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的平均成績;

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的學(xué)生對(duì)交通安全知識(shí)的掌握情況有顯著差異”?

成績小于60分人數(shù)

成績不小于60分人數(shù)

合計(jì)

農(nóng)村中學(xué)

城鎮(zhèn)中學(xué)

合計(jì)

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),離心率為

)求橢圓的方程.

)直線與橢圓交于,兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),兩點(diǎn),試問在軸上是否存在一個(gè)定點(diǎn)使得?若是,求出定點(diǎn)坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△中,,,點(diǎn)邊上,且.

(1)若,求;

(2)若,求△的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視廠家準(zhǔn)備在五一舉行促銷活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬元)和銷售量y(萬臺(tái))的數(shù)據(jù)如下:

(1)若用線性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線性回歸方程(其中;參考方程:回歸直線,

(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線性回歸模型和該模型的分別約為0.75和0.88,請(qǐng)用說明選擇哪個(gè)回歸模型更好;

(3)已知利潤z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷售量及利潤的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案