【題目】過(guò)雙曲線的右焦點(diǎn)且垂直于軸的直線與雙曲線交于兩點(diǎn),為虛軸的一個(gè)端點(diǎn),且為鈍角三角形,則此雙曲線離心率的取值范圍為__________.
【答案】
【解析】分析:設(shè)出雙曲線的左焦點(diǎn),令x=﹣c,代入雙曲線的方程,解得A,B的坐標(biāo),討論∠DAB為鈍角,可得<0,或∠ADB為鈍角,可得<0,運(yùn)用向量數(shù)量積的坐標(biāo)表示,再由離心率公式和范圍,即可得到所求范圍.
詳解:設(shè)雙曲線的左焦點(diǎn)F1(﹣c,0),
令x=﹣c,可得y=±=±,
可得A(﹣c,),B(﹣c,﹣),
又設(shè)D(0,b),可得=(c,b﹣),
=(0,﹣),=(﹣c,﹣b﹣),
由△ABD為鈍角三角形,可能∠DAB為鈍角,可得<0,
即為0﹣(b﹣)<0,
化為a>b,即有a2>b2=c2﹣a2,
可得c2<2a2,即e=<,
又e>1,可得1<e<,
可能△ADB中,∠ADB為鈍角,可得<0,
即為c2﹣(+b)(﹣b)<0,
化為c4﹣4a2c2+2a4>0,
由e=,可得e4﹣4e2+2>0,
又e>1,可得e>.
綜上可得,e的范圍為(1,)∪(.+∞).
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷的單調(diào)性;
(2)求函數(shù)的零點(diǎn)的個(gè)數(shù);
(3)令,若函數(shù)在(0,)內(nèi)有極值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的圓上, 垂直與圓所在平面, 為的垂心.
(1)求證:平面平面;
(2)若,點(diǎn)在線段上,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為2的圓內(nèi)有兩條圓弧,一質(zhì)點(diǎn)M自點(diǎn)A開(kāi)始沿弧A-B-C-O-A-D-C做勻速運(yùn)動(dòng),則其在水平方向(向右為正)的速度的圖像大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上、下焦點(diǎn)分別為,上焦點(diǎn)到直線的距離為3,橢圓的離心率.
(1)求橢圓的方程;
(2)橢圓,設(shè)過(guò)點(diǎn)斜率存在且不為0的直線交橢圓于兩點(diǎn),試問(wèn)軸上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車(chē)的使用年數(shù)()與銷(xiāo)售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
銷(xiāo)售價(jià)格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關(guān)于的回歸直線方程.
(參考公式:,)
(II)已知每輛該型號(hào)汽車(chē)的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷(xiāo)售一輛該型號(hào)汽車(chē)所獲得的利潤(rùn)最大?(利潤(rùn)=銷(xiāo)售價(jià)格-收購(gòu)價(jià)格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)若,且是函數(shù)的一個(gè)極值,求函數(shù)的最小值;
(Ⅱ)若,求證:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條規(guī)定:機(jī)動(dòng)車(chē)行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇到行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車(chē)讓行,俗稱(chēng)“禮讓斑馬線”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為的統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請(qǐng)根據(jù)表中所給前5個(gè)月的數(shù)據(jù),求不“禮讓斑馬線”的駕駛員人數(shù)與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數(shù)的實(shí)際人數(shù)與預(yù)測(cè)人數(shù)之差小于5,則稱(chēng)該十字路口“禮讓斑馬線”情況達(dá)到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達(dá)到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再?gòu)乃x取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的兩人恰好來(lái)自同一月份的概率.
參考公式: ,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com