【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:
(I)已知該校有 名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足 小時(shí)的人數(shù).
(II)若從學(xué)習(xí)時(shí)間不少于 小時(shí)的學(xué)生中選取 人,設(shè)選到的男生人數(shù)為 ,求隨機(jī)變量 的分布列.
(III)試比較男生學(xué)習(xí)時(shí)間的方差 與女生學(xué)習(xí)時(shí)間方差 的大。ㄖ恍鑼懗鼋Y(jié)論).
【答案】解:由折線圖可得共抽取了20人,其中男生中學(xué)習(xí)時(shí)間不足 小時(shí)的有12人,女生中學(xué)習(xí)時(shí)間不足 小時(shí)的有8人。
∴可估計(jì)全校中每天學(xué)習(xí)不足 小時(shí)的人數(shù)為: 人.
(II)學(xué)習(xí)時(shí)間不少于 本的學(xué)生共 人,其中男學(xué)生人數(shù)為 人,故 的所有可能取值為 , , , , .
由題意可得 ;
;
;
;
.
所以隨機(jī)變量 的分布列為
∴均值
(Ⅲ)由折線圖可得
【解析】(1)根據(jù)題意由折線圖可估算出每天學(xué)習(xí)不足 4 小時(shí)的人數(shù)。(2)由已知得出隨機(jī)變量 X 的所有可能取值,結(jié)合概率的定義分別求出各個(gè)值的概率列表即可,再利用均值的公式代入數(shù)值求出即可。(3)由圖像可得到樣本估算結(jié)果進(jìn)而得到結(jié)論。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征的相關(guān)知識(shí)可以得到問題的答案,需要掌握用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差.在隨機(jī)抽樣中,這種偏差是不可避免的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}為遞增的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x﹣1),其中f(x)=x2﹣4x+2,則數(shù)列{an}的通項(xiàng)公式為( )
A.an=n﹣2
B.an=2n﹣4
C.an=3n﹣6
D.an=4n﹣8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中, , , ,其中n∈N* .
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bnbn+1cosnπ,n∈N* , 數(shù)列{cn}的前n項(xiàng)和為Tn , 若當(dāng)n∈N*且n為偶數(shù)時(shí), 恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn , 試求數(shù)列{S2n﹣Sn}的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 其中a2=﹣2,S6=6.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{|an|}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:平面PAB⊥平面PCB;
(2)求證:PD∥平面EAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 , 是非零不共線的向量,設(shè) = + ,定義點(diǎn)集M={K| = },當(dāng)K1 , K2∈M時(shí),若對(duì)于任意的r≥2,不等式| |≤c| |恒成立,則實(shí)數(shù)c的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com