【題目】為了調(diào)查公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機(jī)抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(1)是否有的把握認(rèn)為飲食習(xí)慣與月收入有關(guān)系?若有,請說明理由,若沒有,說明理由并分析原因;
(2)從飲食指數(shù)在內(nèi)的員工中任選2人,求他們的飲食指數(shù)均在內(nèi)的概率;
(3)經(jīng)調(diào)查某地若干戶家庭的年收入(萬元)和年飲支出(萬元)具有線性相關(guān)關(guān)系,并得到關(guān)于的回歸直線方程:.若一個(gè)員工的月收入恰好為這30人的月平均收入,估計(jì)該人的年飲食支出費(fèi)用.
附:,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)有;(2);(3)1.6881萬元.
【解析】
(1)計(jì)算,根據(jù)值作出結(jié)論;(2)列出所有可能共10種,其中飲食指數(shù)均在內(nèi)的有3種,由古典概型求解即可(3)根據(jù)頻率分布直方圖求出此人月均收入,計(jì)算出年均收入代入回歸直線方程即可求解.
(1)根據(jù)頻率分布直方圖,月收入4000元以上的人數(shù)為,
所以完成下列列聯(lián)表如下:
月收入4000元以下 | 月收入4000元以上 | 合計(jì) | |
主食 蔬菜 | 8 | 10 | 18 |
主食 肉類 | 1 | 11 | 12 |
合計(jì) | 9 | 21 | 30 |
所以,故有的把握認(rèn)為飲食習(xí)慣與月收入有關(guān)系,
(2)飲食指數(shù)在內(nèi)的員工有5人,其中在的有3人,設(shè)為,在的有2人,設(shè)為,從飲食指數(shù)在內(nèi)的員工中任選2人,
所有結(jié)果為,,,,,,,,,,共10種,
其中他們的飲食指數(shù)均在內(nèi)的結(jié)果為,,,共3種,
所以概率為.
(3)根據(jù)頻率分布直方圖,(百元),
所以(萬元),
故該人的年飲食支出費(fèi)用約為1.6881萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕成本為50元,每個(gè)蛋糕的售價(jià)為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若該蛋糕店某一天制作生日蛋糕17個(gè),設(shè)當(dāng)天的需求量為,則當(dāng)天的利潤(單位:元)是多少?
(2)若蛋糕店一天制作17個(gè)生日蛋糕.
①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;
②求當(dāng)天的利潤不低于600圓的概率.
(3)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個(gè)還是17個(gè)生日蛋糕?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營戶 | 100 | 50 | 150 |
合計(jì) | 140 | 60 | 200 |
(1)寫出選擇5個(gè)國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)以該小區(qū)的個(gè)體經(jīng)營戶為樣本,頻率作為概率,從全國個(gè)體經(jīng)營戶中隨機(jī)選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有A,B、C、D四人先后感染了新型冠狀病毒,其中只有A到過疫區(qū),B肯定是受A感染的,對于C,因?yàn)殡y以判定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是,同樣也假設(shè)D受A、B和C感染的概率都是.在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個(gè)隨機(jī)變量,寫出X的可能取值為______,并求X的均值(即數(shù)學(xué)期望)為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為、,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎(jiǎng)金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎(jiǎng)金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹,求該株茶樹恰好種在圭田內(nèi)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,其中.
(1)若滿足.
①當(dāng),且時(shí),求的值;
②若存在互不相等的正整數(shù),滿足,且成等差數(shù)列,求的值.
(2)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前n項(xiàng)和為,,,若,,且恒成立,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com