已知函數(shù).
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當(dāng)時(shí),若上是單調(diào)函數(shù),求的取值范圍.(參考數(shù)據(jù)
(1)①,②;(2)

試題分析:(1)①根據(jù)處取得極值,求導(dǎo)將帶入到導(dǎo)函數(shù)中,聯(lián)立方程組求出的值;②存在性恒成立問題,,只需,進(jìn)入通過求導(dǎo)求出的極值,最值.(2)當(dāng)的未知時(shí),要根據(jù)中分子是二次函數(shù)形式按進(jìn)行討論.
試題解析:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020459692535.png" style="vertical-align:middle;" />.
,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020459037447.png" style="vertical-align:middle;" />在處取和極值,故,
,解得.
②由題意:存在,使得不等式成立,則只需
,令,令,
所以上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減
所以處取得極小值,
而最大值需要比較的大小,
,
,
比較與4的大小,而,所以

所以
所以.
(2)當(dāng) 時(shí),
①當(dāng)時(shí),上單調(diào)遞增;
②當(dāng)時(shí),∵ ,則上單調(diào)遞增;
③當(dāng)時(shí),設(shè),只需,從而得,此時(shí)上單調(diào)遞減;
綜上可得,.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)為實(shí)數(shù),函數(shù)
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)上無零點(diǎn),求最小值;
(Ⅲ)若對(duì)任意給定的,在上總存在兩個(gè)不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.
(3) 求證:,(其中,是自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為定義在上的可導(dǎo)函數(shù),對(duì)于恒成立,且為自然對(duì)數(shù)的底數(shù),則(    )
A.
B.
C.
D.的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)當(dāng)時(shí),討論的單調(diào)性;
(II)若時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為,對(duì)于任意的,函數(shù) 的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),的導(dǎo)函數(shù)為,且,則下列不等式成立的是(注:e為自然對(duì)數(shù)的底數(shù))(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案