函數(shù)f(x)=
x3+x
x2
+3(x>0)的最小值是( 。
A、5
B、3
33
C、3
D、2
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:f(x)=
x3+x
x2
+3=x+
1
x
+3,利用基本不等式,即可得出結(jié)論.
解答: 解:f(x)=
x3+x
x2
+3=x+
1
x
+3,
∵x>0,∴x+
1
x
≥2(當(dāng)且僅當(dāng)x=1時(shí)取等號(hào)),
∴當(dāng)x=1時(shí),函數(shù)f(x)=
x3+x
x2
+3(x>0)的最小值是2+3=5.
故選:A.
點(diǎn)評(píng):本題考查函數(shù)的最值,考查基本不等式的運(yùn)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|x|+3的值域?yàn)椋?,5),則這樣的函數(shù)一共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把4個(gè)顏色各不相同的乒乓球隨機(jī)地放入編號(hào)為1、2、3、4的四個(gè)盒子里,則恰好有一個(gè)盒子是空盒的放法是( 。┓N.
A、64B、288
C、256D、144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人下棋,兩人下成和棋的概率是
1
2
,乙獲勝的概率是
1
3
,則下列說法正確的是( 。
A、乙不輸?shù)母怕适?span id="1wpebjk" class="MathJye">
2
3
B、甲獲勝的概率是
1
3
C、甲不x=10輸?shù)母怕适?span id="pxfvfdd" class="MathJye">
1
2
D、乙輸?shù)母怕适?span id="mnvd2wg" class="MathJye">
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱A1D1,C1D1的中點(diǎn),N為線段B1C的中點(diǎn),若點(diǎn)P,M分別為線段D1B,EF上的動(dòng)點(diǎn),則PM+PN的最小值為( 。
A、1
B、
3
2
4
C、
2
6
+
2
4
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩條異面直線所成的角為60°,則稱這對(duì)異面直線為“黃金異面直線對(duì)”,在連接正方體的各個(gè)頂點(diǎn)的所有直線中,“黃金異面直線對(duì)”共有( 。
A、12對(duì)B、18對(duì)
C、24對(duì)D、30對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三邊長(zhǎng),則稱f(x)為“保三角形函數(shù)”.以下說法正確的是( 。
A、f(x)=1(x∈R)不是“保三角形函數(shù)”
B、若定義在R上的函數(shù)f(x)的值域是[
e
,e](e為自然對(duì)數(shù)的底數(shù)),則f(x)一定是“保三角形函數(shù)”
C、f(x)=
1
x2+1
(x∈R)是“保三角形函數(shù)”
D、“保三角形函數(shù)”一定是單調(diào)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=1.70.3,b=0.93.1,c=log30.7,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、b>c>a
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-3x,g(x)=-6x(a∈R).
(1)若x=3是f(x)的極值點(diǎn),求f(x)在x∈[1,a]上的最小值和最大值;
(2)若h(x)=f(x)-g(x)在x∈(0,+∞)時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案