【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.
【答案】
【解析】
先求出基本事件總數(shù)n,最后一個次品恰好在第五次測試時被發(fā)現(xiàn)包含的基本事件為:優(yōu)先考慮第五次(位置)測試.這五次測試必有一次是測試正品,有C61種,4只次品必有一只排在第五次測試,有C41種,那么其余3只次品和一只正品將在第1至第4次測試中實現(xiàn),有A44種.根據(jù)分步計數(shù)原理有C61C41A44種.由此能求出最后一個次品恰好在第五次測試時被發(fā)現(xiàn)的概率.
現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,
直到4個次品全測完為止,最后一個次品恰好在第五次測試時被發(fā)現(xiàn),
基本事件總數(shù)n,
最后一個次品恰好在第五次測試時被發(fā)現(xiàn)包含的基本事件為:
優(yōu)先考慮第五次(位置)測試.這五次測試必有一次是測試正品,有C61種,
4只次品必有一只排在第五次測試,有C41種,
那么其余3只次品和一只正品將在第1至第4次測試中實現(xiàn),有A44種.
于是根據(jù)分步計數(shù)原理有C61C41A44種.
∴最后一個次品恰好在第五次測試時被發(fā)現(xiàn)的概率p.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,以極點為原點,極軸所在直線為軸建立直角坐標系.過點作傾斜角為的直線交曲線于,兩點.
(1)求曲線的直角坐標方程,并寫出直線的參數(shù)方程;
(2)過點的另一條直線與關于直線對稱,且與曲線交于,兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上、下頂點、右頂點、右焦點分別為B2、B1、A、F,延長B1F與AB2交于點P,若∠B1PA為鈍角,則此橢圓的離心率e的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)說,年過半百的笛卡爾擔任瑞典一小公國的公主克里斯蒂娜的數(shù)學老師,日久生情,彼此愛慕,其父國王知情后大怒,將笛卡爾流放回法國,并軟禁公主,笛卡爾回法國后染上黑死病,連連給公主寫信,死前最后一封信只有一個公式:國王不懂,將這封信交給了公主,公主用笛卡爾教她的坐標知識,畫出了這個圖形“心形線”.明白了笛卡爾的心意,登上了國王寶座后,派人去尋笛卡爾,其逝久矣(僅是一個傳說).心形線是由一個圓上的一個定點,當該圓繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名.在極坐標系中,方程表示的曲線就是一條心形線,如圖,以極軸所在直線為軸,極點為坐標原點的直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的極坐標方程;
(2)若曲線與相交于、、三點,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)滿足:(1)對任意,恒有成立;(2)當時,.給出如下結論:
①對任意,有;
②函數(shù)的值域為
③存在,使得;
④“函數(shù)在區(qū)間上單調遞減”的充要條件是“存在,使得”.
上述結論正確有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000t生活垃圾.經(jīng)分揀以后數(shù)據(jù)統(tǒng)計如下表(單位:):根據(jù)樣本估計本市生活垃圾投放情況,下列說法錯誤的是( )
廚余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.廚余垃圾投放正確的概率為
B.居民生活垃圾投放錯誤的概率為
C.該市三類垃圾箱中投放正確的概率最高的是“可回收物”箱
D.廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差為20000
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,,平面,,點,分別為和中點.
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com