【題目】已知定義域為的函數(shù)滿足:(1)對任意,恒有成立;(2)當時,.給出如下結論:
①對任意,有;
②函數(shù)的值域為
③存在,使得;
④“函數(shù)在區(qū)間上單調遞減”的充要條件是“存在,使得”.
上述結論正確有( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
依據(jù)題中條件注意研究每個選項的正確性,連續(xù)利用題中第(1)個條件得到①正確;連續(xù)利用題中第(2)個條件得到②正確;利用反證法及2x變化如下:2,4,8,16,32,判斷③命題錯誤;據(jù)①②③的正確性可得④是正確的.
①f(2m)=f(22m﹣1)=2f(2m﹣1)=…=2m﹣1f(2),正確;
②取x∈(2m,2m+1],則∈(1,2];f()=2,從而
f(x)=2f()=…=2mf()=2m+1﹣x,其中,m=0,1,2,…
從而f(x)∈[0,+∞),正確;
③f(2n+1)=2n+1﹣2n﹣1,假設存在n使f(2n+1)=9,即存在x1,x2,10,又,2x變化如下:2,4,8,16,32,顯然不存在,所以該命題錯誤;
④根據(jù)前面的分析容易知道該選項正確;
綜合有正確的序號是①②④.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率作了調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:
(1)假如小明某月的工資、薪金等稅前收入為7500元,請你幫小明算一下調整后小明的實際收入比調整前增加了多少?
(2)某稅務部門在小明所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
先從收入在及的人群中按分層抽樣抽取7人,再從中選3人作為新納稅法知識宣講員,用隨機變量表示抽到作為宣講員的收入在元的人數(shù),求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是定義在R上的兩個周期函數(shù),的周期為4,的周期為2,且是奇函數(shù).當時,,,其中k>0.若在區(qū)間(0,9]上,關于x的方程有8個不同的實數(shù)根,則k的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有10個不同的產(chǎn)品,其中4個次品,6個正品.現(xiàn)每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發(fā)現(xiàn),則該情況出現(xiàn)的概率是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為,直線l過點且與x軸不重合,l交圓于C,D兩點,過作的平行線,交于點E.設點E的軌跡為.
(1)求的方程;
(2)直線與相切于點M,與兩坐標軸的交點為A與B,直線經(jīng)過點M且與垂直,與的另一個交點為N,當取得最小值時,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的焦距為4,且過點.
(1)求橢圓的方程
(2)設橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4 坐標系與參數(shù)方程選講
在直角坐標系中,直線的參數(shù)方程(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線極坐標方程為.
(1)求直線的普通方程以及曲線的參數(shù)方程;
(2)當時,為曲線上動點,求點到直線距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com