【題目】已知函數(shù),其中為常數(shù),且.

1)若是奇函數(shù),求的取值集合;

2)當時,設的反函數(shù),且的圖象與的圖象關于對稱,求的取值集合;

3)對于問題(1)(2)中的、,當時,不等式恒成立,求的取值范圍.

【答案】1;(2;(3.

【解析】

1)由求出實數(shù)的值,然后檢驗此時函數(shù)為奇函數(shù),由此可得出集合;

2)當時,由,解得,可得出,然后解出方程可得出集合;

3)原問題轉(zhuǎn)化為恒成立,可得出,由此能求出實數(shù)的取值范圍.

1)由于函數(shù)為奇函數(shù),且定義域為,則,

,,

由題意得,整理得,解得.

,,則,定義域為,關于原點對稱,

此時,函數(shù)為奇函數(shù),合乎題意,因此,;

2)當時,由,可得,得,

,所以,,

由于的圖象與的圖象關于對稱,

為方程的實數(shù)解,解方程,即,

變形得,解得,即,因此,;

3)令

原問題轉(zhuǎn)化為上恒成立,

,解得.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其圖象的一條切線為.

1)求實數(shù)的值;

2)求證:若,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓C:(),稱圓心在原點O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點C上.

(1)求橢圓C的方程和其“衛(wèi)星圓”方程;

(2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,使得,與橢圓C都只有一個交點,且,分別交其“衛(wèi)星圓”于點M,N,證明:弦長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某居民區(qū)有一個銀行網(wǎng)點(以下簡稱“網(wǎng)點”),網(wǎng)點開設了若干個服務窗口,每個窗口可以辦理的業(yè)務都相同,每工作日開始辦理業(yè)務的時間是8點30分,8點30分之前為等待時段.假設每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率都相等,且每位儲戶是否在該時段到網(wǎng)點相互獨立.根據(jù)歷史數(shù)據(jù),統(tǒng)計了各工作日在等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計每工作日等待時段到網(wǎng)點等待辦理業(yè)務的儲戶人數(shù)的平均值;

(2)假設網(wǎng)點共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點等待辦理業(yè)務的概率;

②儲戶都是按照進入網(wǎng)點的先后順序,在等候人數(shù)最少的服務窗口排隊辦理業(yè)務.記“每工作日上午8點30分時網(wǎng)點每個服務窗口的排隊人數(shù)(包括正在辦理業(yè)務的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點至少需開設多少個服務窗口?

參考數(shù)據(jù):;;

;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已如橢圓E)的離心率為,點E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點,且與E交于PQ兩點,試問:是否存在定點C,使得?若存在,求C的坐標:若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對任意的,恒成立,請求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半圓,、分別為半圓軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)對某市工薪階層關于樓市限購令的態(tài)度進行調(diào)查,隨機抽調(diào)了50,他們月收入的頻數(shù)分布及對樓市限購令贊成人數(shù)如表:

月收入(單位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

()由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認為月收入以5500為分界點樓市限購令的態(tài)度有差異;

月收入低于55百元的人數(shù)

月收入不低于55百元的人數(shù)

合計

贊成

不贊成

合計

()若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機抽取6人進行追蹤調(diào)查,并給予其中3紅包獎勵,求收到紅包獎勵的3人中至少有1人收入在[15,25)的概率.

參考公式:K2,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案