有4名學(xué)生,分別插入A、B兩班學(xué)習(xí),求每班最多只能接收3名學(xué)生,且甲不去A班的概率.
考點(diǎn):互斥事件的概率加法公式
專題:概率與統(tǒng)計(jì)
分析:根據(jù)排列組合的思想求出有4名學(xué)生,分別插入A、B兩班學(xué)習(xí)的所有情況和每班最多只能接收3名學(xué)生,且甲不去A班的情況,再利用古典概率求得答案.
解答: 解:4名學(xué)生,分別插入A、B兩班學(xué)習(xí)共有n=24=16種,
每班最多只能接收3名學(xué)生,且甲不去A班,則A一定去B班,
則B班還可以去,0,1,2人,有
C
0
3
+C
1
3
+
C
2
3
=7種,
設(shè)“每班最多只能接收3名學(xué)生,且甲不去A班”為時(shí)間M,
所以P(M)=
7
16
點(diǎn)評(píng):本題主要考查了排列組合思想以及古典概率,本題關(guān)鍵是總事件情況和條件事件情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x-1|+|x-3|≤a2-2a-1在R上的解集為∅,則實(shí)數(shù)a的取值范圍是( 。
A、a<-1或a>3
B、a<0或a>3
C、-1<a<3
D、-1≤a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1+x-
1
x2
4的展開式中,常數(shù)項(xiàng)是(  )
A、1B、13C、-11D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近年來,我國(guó)很多城市都出現(xiàn)了嚴(yán)重的霧霾天氣.為了更好地保護(hù)環(huán)境,2012年國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū) 的PM2.5的年平均濃度不得超過35微克/立方米.某城市環(huán)保部門在2014年1月1日到 2014年3月31日這90天對(duì)某居民區(qū)的PM2.5平均濃度的監(jiān)測(cè)數(shù)據(jù)統(tǒng)計(jì)如下:
組別  PM2.5濃度(微克/立方米) 頻數(shù)(天)
第一組 (0,35] 24
第二組 (35,75] 48
第三組 (75,115] 12
第四組 >115 6
(Ⅰ)在這90天中抽取30天的數(shù)據(jù)做進(jìn)一步分析,每一組應(yīng)抽取多少天?
(Ⅱ)在(Ⅰ)中所抽取的樣本PM2.5的平均濃度超過75(微克/立方米)的若干天中,隨機(jī)抽取2天,求至少有一天平均濃度超過115(微克/立方米)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)有A、B、C、D、E 5個(gè)條件相當(dāng)?shù)拇髮W(xué)生去應(yīng)聘某公司的同一職位時(shí),但只能有3個(gè)人被錄取,若5個(gè)人被錄取的機(jī)會(huì)是相等的.
(Ⅰ)求大學(xué)生A被錄取的概率;
(Ⅱ)求大學(xué)生A或B被錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小樂星期六下午從文具超市買了一套立體幾何學(xué)具,他發(fā)現(xiàn)學(xué)具袋里有三組長(zhǎng)度相等的塑料棒,長(zhǎng)度分別為1,
2
,2,而且每組恰有三根,于是想利用它們拼出正三棱錐.設(shè)拼出的正三棱錐的側(cè)棱長(zhǎng)為l,底面正三角形的邊長(zhǎng)為s.
(1)若小樂選取l=1,s=
2
,現(xiàn)從該正三棱錐的六條棱中隨機(jī)選取兩條,求這兩條棱互相垂直的概率;
(2)若小樂隨機(jī)地選取l,s,可以拼出m個(gè)不同的正三棱錐.設(shè)從每個(gè)正三棱錐的六條棱中隨機(jī)選取兩條,這兩條棱互相垂直的概率為X,請(qǐng)分別寫出其相應(yīng)的X的值(不用寫出求解X的計(jì)算過程).小樂再?gòu)钠闯龅膍個(gè)正三棱錐中任選兩個(gè),求他所選的兩個(gè)正三棱錐的X值相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(2,0),離心率為
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)斜率為k的直線l經(jīng)過點(diǎn)M(0,1)且與橢圓C交于不同兩點(diǎn)A,B,當(dāng)點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
AC
=(cos
x
2
+sin
x
2
,-sin
x
2
),
BC
=(cos
x
2
-sin
x
2
,2cos
x
2
)
,設(shè)f(x)=
AC
BC

(1)求f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)設(shè)關(guān)于x的方程f(x)=a在[-
π
2
,
π
2
]有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin(α+β)cosα-
1
2
[sin(2α+β)-sinβ]=sinβ

查看答案和解析>>

同步練習(xí)冊(cè)答案