【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 =( )
A.﹣
B.
C.±
D.
【答案】B
【解析】解:∵數(shù)列1,a1 , a2 , 9是等差數(shù)列,∴a1+a2 =1+9=10. ∵數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,∴b22=1×9,
再由題意可得b2=1×q2>0 (q為等比數(shù)列的公比),
∴b2=3,則 = ,
故選:B.
【考點精析】本題主要考查了等差數(shù)列的性質(zhì)和等比數(shù)列的基本性質(zhì)的相關(guān)知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列;{an}為等比數(shù)列,則下標成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a15+a16+a17=﹣45,a9=﹣36,Sn為其前n項和.
(1)求Sn的最小值,并求出相應(yīng)的n值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的離心率為 ,兩個頂點分別為A(﹣a,0),B(a,0),點M(﹣1,0),且3 = ,過點M斜率為k(k≠0)的直線交橢圓E于C,D兩點,其中點C在x軸上方.
(1)求橢圓E的方程;
(2)若BC⊥CD,求k的值;
(3)記直線AD,BC的斜率分別為k1 , k2 , 求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn , 且a3+a5=a4+7,S10=100.
(1)求{an}的通項公式;
(2)求滿足不等式Sn<3an﹣2的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a1=2,a3 , a2+a4 , a5成等差數(shù)列.
(1)求數(shù)列{an}的通項公式
(2)若數(shù)列{bn}滿足b1+ +…+ =an(n∈N*),{bn}的前n項和為Sn , 求使Sn﹣nan+6≥0成立的正整數(shù)n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn= nan+1 , 其中a1=1
(1)求數(shù)列{an}的通項公式;
(2)若bn= + ,數(shù)列{bn}的前n項和為Tn , 求證:Tn<2n+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通項公式;
(Ⅱ)求{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足 = . (Ⅰ)求C的值;
(Ⅱ)若 =2,b=4 ,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com