已知下列四個命題,其中真命題的序號是( )
① 若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;
② 若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;
③ 若一條直線平行一個平面,另一條直線垂直這個平面,則這兩條直線垂直;
④ 若兩條直線垂直,則過其中一條直線有唯一一個平面與另外一條直線垂直;
A.①② | B.②③ | C.②④ | D.③④ |
D
解析試題分析:若一條直線垂直于一個平面內(nèi)無數(shù)條平行的直線,則這條直線與這個平面不一定垂直,所以①錯;若一條直線平行于一個平面,根據(jù)線面垂直的定義,則垂直于這條直線的直線不一定垂直于這個平面,所以②;若一條直線平行一個平面,平面內(nèi)必有一條直線與之平行.另一條直線垂直這個平面,則這該直線與平面內(nèi)的那條直線垂直,從而這兩條直線垂直,所以③正確;若兩條直線垂直,則過其中一條直線的平面與另外一條直線垂直只有一個.因為由線面垂直的定義,該平面內(nèi)必有與已知直線相交的某條直線與另一已知直線垂直,由這兩條相交直線可以確定一個平面,從而該平面唯一.所以④正確.
考點:點、線、面的位置關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
下列四個結(jié)論:
⑴兩條不同的直線都和同一個平面平行,則這兩條直線平行.
⑵兩條不同的直線沒有公共點,則這兩條直線平行.
⑶兩條不同直線都和第三條直線垂直,則這兩條直線平行.
⑷一條直線和一個平面內(nèi)無數(shù)條直線沒有公共點,則這條直線和這個平面平行.
其中正確的個數(shù)為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)、是兩個不重合的平面,m、m是兩條不重合的直線,則以下結(jié)論錯誤的是
A.若,則 |
B.若,則 |
C.若,則 |
D.若,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若關(guān)于直線與平面,有下列四個命題:
①若,,且,則;
②若,,且,則;
③若,,且,則;
④若,,且,則;
其中真命題的序號( )
A.①② | B.③④ | C.②③ | D.①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是( )
A.平面ABD⊥平面ABC | B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC | D.平面ADC⊥平面ABC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
給出下列關(guān)于互不相同的直線和平面的四個命題:
①若,,點,則與不共面;
②若、是異面直線,,,且,,則;
③若,則;
④若,,,,,則.
其中為假命題的是( )
A.① | B.② | C.④ | D.③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知α,β,γ是三個不同的平面,命題“α∥β,且α⊥γ⇒β⊥γ”是真命題,如果把α,β,γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題有 ( )
A.0個 | B.1個 | C.2個 | D.3個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com