已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
中心在原點(diǎn),焦點(diǎn)在x軸上的一橢圓與一雙曲線有共同的焦點(diǎn)F1,F2,且|F1F2|=2,橢圓的長(zhǎng)半軸與雙曲線半實(shí)軸之差為4,離心率之比為3∶7.
(1)求這兩曲線方程;
(2)若P為這兩曲線的一個(gè)交點(diǎn),求cos∠F1PF2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
平面上有三個(gè)點(diǎn)A(-2,y),B,C(x,y),若,則動(dòng)點(diǎn)C的軌跡方程是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“R型直線”.給出下列直線:①y=x+1;②y=2;③y=x;④y=2x+1,其中為“R型直線”的是( ).
A.①② B.①③ C.①④ D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并且與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)P(0,-1)是橢圓C1:+=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最
大值時(shí)直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為e,過F2的直線與雙曲線的右支交于A,B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2=( ).
A.1+2 B.4-2
C.5-2 D.3+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
命題“對(duì)于任意角θ,cos4θ-sin4θ=cos 2θ”的證明:cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ過程應(yīng)用了( )
A.分析法
B.綜合法
C.綜合法、分析法綜合應(yīng)用
D.間接證明法
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com