【題目】隨著高等級公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場對100棵“天竺桂”的移栽成活量(單位:棵)與在前三個月內(nèi)澆水次數(shù)間的關(guān)系進行研究,根據(jù)以往的記錄,整理相關(guān)的數(shù)據(jù)信息如圖所示:
(1)結(jié)合圖中前4個矩形提供的數(shù)據(jù),利用最小二乘法求關(guān)于的回歸直線方程;
(2)用表示(1)中所求的回歸直線方程得到的100棵“天竺桂”的移栽成活量的估計值,當圖中余下的矩形對應(yīng)的數(shù)據(jù)組的殘差的絕對值,則回歸直線方程有參考價值,試問:(1)中所得到的回歸直線方程有參考價值嗎?
(3)預(yù)測100棵“天竺桂”移栽后全部成活時,在前三個月內(nèi)澆水的最佳次數(shù).
附:回歸直線方程為,其中, .
【答案】(1).(2)見解析;(3)7次.
【解析】試題分析:(1)先計算樣本中心坐標,利用公式求出b,a,得到回歸直線方程.
(2)通過回歸方程,當時, ,則
(3)通過回歸方程, 100棵“天竺桂”移栽后全部成活,則由,得,可得最佳澆水次數(shù).
試題解析:(1)由所給數(shù)據(jù)計算得, ,
, ,
∴, ,
∴ , ,
所以回歸直線方程是.
(2)當時, ,則 ,
∴可以認為所得到的回歸直線方程是有參考價值的.
(3)預(yù)測100棵“天竺桂”移栽后全部成活,則由,得,
則預(yù)測100棵“天竺桂”移栽后全部成活時,在前三個月內(nèi)澆水的最佳次數(shù)為7次.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等腰梯形中, , 于點, ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的快速發(fā)展,民用汽車的保有量也迅速增長.機動車保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國,尤其是大中型城市,機動車已成為城市空氣污染的重要來源.因此,合理預(yù)測機動車保有量是未來進行機動車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國民經(jīng)濟和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據(jù),該市機動車保有量數(shù)據(jù)如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
機動車保有量(萬輛) | 169 | 181 | 196 | 215 | 230 |
(1)在圖所給的坐標系中作出數(shù)據(jù)對應(yīng)的散點圖;
(2)建立機動車保有量關(guān)于年份代碼的回歸方程;
(3)按照當前的變化趨勢,預(yù)測2017年該市機動車保有量.
附注:回歸直線方程中的斜率和截距的最小二乘估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,滿足.
(1)求角C的大小;
(2)設(shè)函數(shù)f(x)=cos(2x+C),將f(x)的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)已知動圓過定點且與軸截得的弦的長為.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)已知點,動直線和坐標軸不垂直,且與軌跡相交于兩點,試問:在軸上是否存在一定點,使直線過點,且使得直線,,的斜率依次成等差數(shù)列?若存在,請求出定點的坐標;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為, , 為整數(shù),且對任意都有.
(1)求的通項公式;
(2)設(shè), 求的前項和;
(3)在(2)的條件下,若數(shù)列滿足.是否存在實數(shù),使得數(shù)列是單調(diào)遞增數(shù)列.若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列為遞增的等比數(shù)列, ,
數(shù)列滿足.
(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求證: 是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項和,并求使得對任意都成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個地區(qū)共有5個鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機統(tǒng)計了4位觀眾的周均學習成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測年齡為60歲觀眾周均學習成語知識的時間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com