(1)化簡(jiǎn):1-tanα•sin(α-2π)•sin(
π
2
+α);
(2)若α=-
17
4
π,求(1)式的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專(zhuān)題:三角函數(shù)的求值
分析:(1)由條件利用同角三角函數(shù)的基本關(guān)系求得所給式子的值.
(2)利用誘導(dǎo)公式、以及三角函數(shù)在各個(gè)象限中的符號(hào)求得α=-
17
4
π時(shí)(1)式的值.
解答: 解:(1)1-tanα•sin(α-2π)•sin(
π
2
+α)=1-tanα•sin•cosα=1-sin2α=cos2α.
(2)若α=-
17
4
π,則1-tanα•sin(α-2π)•sin(
π
2
+α)=cos2α=cos2
17π
4
=cos2
π
4
=
1
2
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,若過(guò)點(diǎn)F且斜率為1的直線(xiàn)與拋物線(xiàn)相交于M,N兩點(diǎn),且|MN|=8.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)設(shè)直線(xiàn)l為拋物線(xiàn)C的切線(xiàn)且l∥MN,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在直四棱柱ABCD-A1B1C1D1中,當(dāng)?shù)酌嫠倪呅蜛1B1C1D1滿(mǎn)足條件
 
時(shí),有A1C⊥B1D1(注:填上你認(rèn)為正確的一種情況即可,不必考慮所有可能的情況).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為2的扇形的面積為4,則這個(gè)扇形的圓心角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
x2-2x+5
-
x2+1
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α為平面,m,n為直線(xiàn)(  )
A、若m,n與α所成角相等,則m∥n
B、若m∥α,n∥α,則m∥n
C、若m,n與α所成角互余,則m⊥n
D、若m∥α,n⊥α,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+kx+1<0的解集為空集,則k的取值范圍是( 。
A、[-2,2]
B、(-∞,-2]∪[2,+∞)
C、(-2,2)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿(mǎn)足約束條件:
y≥x
x+2y≤2
x≥-2
,則z=x-3y+4的最大值為( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=60°,a=
3
,b=
2
,則B等于(  )
A、45°或135°B、60°
C、45°D、135°

查看答案和解析>>

同步練習(xí)冊(cè)答案