【題目】在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為為參數(shù)).

1)設(shè)直線l與曲線C交于M,N兩點(diǎn),求|MN|;

2)若點(diǎn)Pxy)為曲線C上任意一點(diǎn),求的取值范圍.

【答案】1;(2[0,7].

【解析】

(1)分別求出直線l,曲線C的直角坐標(biāo)方程,聯(lián)立可求出點(diǎn)MN的坐標(biāo),根據(jù)兩點(diǎn)間距離公式即可求解;(2)設(shè)出點(diǎn)P的參數(shù)坐標(biāo),結(jié)合輔助角公式及正弦函數(shù)的值域即可求解.

⑴直線l的直角坐標(biāo)方程為:yx①,

曲線C的普通方程為②.

聯(lián)立①②得,即,∴不妨設(shè),,則 .

⑵因?yàn)辄c(diǎn)Px,y)為曲線C上任意一點(diǎn),所以可設(shè),,

,其中,

, ,

,故的取值范圍為[0,7].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,點(diǎn)M是外一點(diǎn),BM=2CM=2,則AM的最大值與最小值的差為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上除AB外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DCEBDCEB1,AB4.

1)證明:平面ADE⊥平面ACD

2)當(dāng)C點(diǎn)為半圓的中點(diǎn)時(shí),求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為緩解高三學(xué)生的高考?jí)毫,?jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過一段時(shí)間的訓(xùn)練后從該年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測(cè)試,并將其成績(jī)分為、、、五個(gè)等級(jí),統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問題:

(1)試估算該校高三年級(jí)學(xué)生獲得成績(jī)?yōu)?/span>的人數(shù);

(2)若等級(jí)、、分別對(duì)應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級(jí)成績(jī)的平均分大于90分時(shí),高三學(xué)生的考前心理穩(wěn)定,整體過關(guān),請(qǐng)問該校高三年級(jí)目前學(xué)生的考前心理穩(wěn)定情況是否整體過關(guān)?

(3)以每個(gè)學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對(duì)成績(jī)等級(jí)為的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對(duì)一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四川省閬中中學(xué)某部根據(jù)運(yùn)動(dòng)場(chǎng)地的影響,但為盡大可能讓學(xué)生都參與到運(yùn)動(dòng)會(huì)中來,在2018春季運(yùn)動(dòng)會(huì)中設(shè)置了五個(gè)項(xiàng)目,其中屬于跑步類的兩項(xiàng),分別是200米和400米,另外三項(xiàng)分別為跳繩、跳遠(yuǎn)、跳高學(xué)校要求每位學(xué)生必須參加,且只參加其中一項(xiàng),學(xué)校780名同學(xué)參加各運(yùn)動(dòng)項(xiàng)目人數(shù)統(tǒng)計(jì)如下條形圖:

其中參加跑步類的人數(shù)所占頻率為,為了了解學(xué)生身體健康與參加運(yùn)動(dòng)項(xiàng)目之間的關(guān)系,用分層抽樣的方法從這780名學(xué)生中抽取13人進(jìn)行分析.

1求條形圖中mn的值以及抽取的13人中參加200米的學(xué)生人數(shù);

2現(xiàn)從抽取的參加400米和跳繩兩個(gè)項(xiàng)目中隨機(jī)抽取4人,記其中參加400米跑的學(xué)生人數(shù)為X,求離散型隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程;

(2)直線為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面, ,,,,是線段的中點(diǎn).

(1)證明:平面

(2)當(dāng)為何值時(shí),四棱錐的體積最大?并求此最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,有點(diǎn)、,表示的內(nèi)部及三邊(含頂點(diǎn))上所有點(diǎn)的集合.試求二元函數(shù)點(diǎn)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.

該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:

包裹件數(shù)范圍

包裹件數(shù)

(近似處理)

天數(shù)

(1)某人打算將 , 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;

(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?

查看答案和解析>>

同步練習(xí)冊(cè)答案