【題目】某教育主管部門到一所中學檢查學生的體質健康情況.從全體學生中,隨機抽取12名進行體質健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據學生體質健康標準,成績不低于76的為優(yōu)良.
(1)寫出這組數據的眾數和中位數;
(2)將頻率視為概率.根據樣本估計總體的思想,在該校學生中任選3人進行體質健康測試,求至少有1人成績是“優(yōu)良”的概率;
(3)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的學生人數,求ξ的分布列及期望.
【答案】
(1)解:這組數據的眾數為86,中位數為86.
(2)解:抽取的12人中成績是“優(yōu)良”的頻率為 ,
故從該校學生中任選1人,成績是“優(yōu)良”的概率為
設“在該校學生中任選3人,至少有1人成績是‘優(yōu)良’的事件”為A,
則P(A)=1﹣ =1﹣ = .
(3)解:由題意可得,ξ的可能取值為0,1,2,3.
P(ξ=0)= = ,P(ξ=1)= = ,
P(ξ=2)= = = ,P(ξ=3)= = = ,
所以ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P |
…(12分)
Eξ= =
【解析】(1)利用莖葉圖能求出這組數據的眾數,中位數.(2)抽取的12人中成績是“優(yōu)良”的頻率為 ,由此得到從該校學生中任選1人,成績是“優(yōu)良”的概率為 ,從而能求出“在該校學生中任選3人,至少有1人成績是‘優(yōu)良’”的概率.(3)由題意可得,ξ的可能取值為0,1,2,3,分別求出相對應的概率,由此能求出ξ的分布列和Eξ.
【考點精析】解答此題的關鍵在于理解平均數、中位數、眾數的相關知識,掌握⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現的頻數有關,不受個別數據的影響,有時是我們最為關心的數據.
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數方程
已知曲線,直線:(為參數).
(I)寫出曲線的參數方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在2 015年11月份的高三期中考試后,隨機地抽取了50名學生的數學成績并進行了分析,結果這50名同學的成績全部介于80分到140分之間.現將結果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.
(1)試估計該校數學的平均成績(同一組中的數據用該區(qū)間的中點值作代表);
(2)這50名學生中成績在120分以上的同學中任意抽取3人,該3人在130分(含130分)以上的人數記為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將5名報名參加運動會的同學分別安排到跳繩、接力,投籃三項比賽中(假設這些比賽都不設人數上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )
A. 543 B. 425 C. 393 D. 275
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)求直線在矩陣對應變換作用下的直線的方程;
(2)在平面直角坐標系中,已知曲線以原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,求曲線C與直線交點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,側面PCD⊥底面ABCD,PD⊥CD,E為PC中點,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BE∥平面PAD;
(2)求證:BC⊥平面PBD;
(3)在線段PC上是否存在一點Q,使得二面角Q﹣BD﹣P為45°?若存在,求 的值;若不存在,請述明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的離心率,該橢圓中心到直線的距離為.
(1)求橢圓的方程;
(2)是否存在過點的直線,使直線與橢圓交于,兩點,且以為直徑的圓過定點?若存在,求出所有符合條件的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了制定治理學校門口上學、放學期間家長接送孩子亂停車現象的措施,對全校學生家長進行了問卷調查.根據從中隨機抽取的50份調查問卷,得到了如下的列聯表:
同意限定區(qū)域停車 | 不同意限定區(qū)域停車 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
則認為“是否同意限定區(qū)域停產與家長的性別有關”的把握約為__________.
附:,其中.
0.050 | 0.005 | 0.001 | |
3.841 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com