【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品.

【答案】
(1)解:將6只燈泡分別標(biāo)號(hào)為1,2,3,4,5,6;且1,2為次品;

從6只燈泡中取出2只的基本事件:

1﹣2、1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6、3﹣4、3﹣5、3﹣6、4﹣5、4﹣6、5﹣6共有15種

從6只燈泡中取出2只都是次品的事件只有1個(gè),因此取到2只次品的概率為


(2)解:根據(jù)題意,取到的2只產(chǎn)品中正品,次品各一只的事件有

1﹣3、1﹣4、1﹣5、1﹣6、2﹣3、2﹣4、2﹣5、2﹣6共有8種,

而總的基本事件共有15種,

因此取到2只產(chǎn)品中恰有一只次品的概率為


【解析】(1)將6只燈泡分別標(biāo)號(hào)為1,2,3,4,5,6;且1,2為次品;用列舉法可得從6只燈泡中取出2只的基本事件,即可得從6只燈泡中取出2只都是次品的事件只有1個(gè),進(jìn)而由等可能事件的概率計(jì)算可得答案;(2)由(1)所的基本事件,分析可得取到的2只產(chǎn)品中正品,次品各一只的事件數(shù)目,由古典概型概率公式,計(jì)算可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①,②擬合,得到回歸方程分別為 ,作殘差分析,如表:

身高

60

70

80

90

100

110

體重

6

8

10

14

15

18

0.41

0.01

1.21

-0.19

0.41

-0.36

0.07

0.12

1.69

-0.34

-1.12

(Ⅰ)求表中空格內(nèi)的值;

(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個(gè)模型;

(Ⅲ)殘差大于的樣本點(diǎn)被認(rèn)為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(duì)(Ⅱ)所選擇的模型重新建立回歸方程.

(結(jié)果保留到小數(shù)點(diǎn)后兩位)

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ) 時(shí),討論的單調(diào)性;進(jìn)一步地,若對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.某幾何體如圖所示, 平面 , 是邊長(zhǎng)為的正三角形, , ,點(diǎn)分別是、的中點(diǎn).

I)求證: 平面

II)求證:平面平面

III)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱柱ABC﹣A1B1C1的側(cè)面BCC1B1是菱形,B1C⊥A1B

(1)證明:平面AB1C⊥平面A1BC1;
(2)設(shè)D是A1C1上的點(diǎn),且A1B∥平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體的棱長(zhǎng)為,,分別是棱,的中點(diǎn),過(guò)直線,的平面分別與棱交于,設(shè),,給出以下四個(gè)命題

平面平面

當(dāng)且僅當(dāng)時(shí),四邊形的面積最小;

四邊形周長(zhǎng),是單調(diào)函數(shù)

四棱錐的體積為常函數(shù);

以上命題中假命題的序號(hào)為( ).

A. ①④ B. C. D. ③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形,過(guò)平面,再過(guò)于點(diǎn),過(guò)于點(diǎn)

Ⅰ)求證:

Ⅱ)若平面于點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1是某公交公司1路車從起點(diǎn)站A站途經(jīng)B站和C站,最終到達(dá)終點(diǎn)站D站的格點(diǎn)站路線圖.(8×8的格點(diǎn)圖是由邊長(zhǎng)為1的小正方形組成)

(1)求1路車從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網(wǎng)格中各畫出一種從A站到D站的路線圖.(要求:①與圖1路線不同、路程相同;②途中必須經(jīng)過(guò)兩個(gè)格點(diǎn)站;③所畫路線圖不重復(fù))

查看答案和解析>>

同步練習(xí)冊(cè)答案