【題目】如圖,在四棱錐中,平面平面ABCD,是等邊三角形,四邊形ABCD是矩形,,F為棱PA上一點,且,M為AD的中點,四棱錐的體積為.
(1)若,N是PB的中點,求證:平面平面PCD;
(2)是否存在,使得平面FMB與平面PAD所成的二面角余弦的絕對值為.
【答案】(1)詳見解析(2)存在,使得平面FMB與平面PAD所成的二面角余弦的絕對值為
【解析】
(1)由已知有,,即可證明平面PCD;
(2)建立以M為原點,MA為x軸,ME為y軸,MP為z軸建立空間直角坐標系,則可得FMN的法向量為,取面PAD的法向量,由向量的數(shù)量積公式計算可得解.
解:(1)因為,所以F是AP的中點,又因為N是PB的中點,所以,由四邊形ABCD是矩形,得,故,
;
(2)連接PM,過M作交BC于E,由是等邊三角形,得,,以M為原點,MA為x軸,ME為y軸,MP為z軸建立空間直角坐標系,
假設存在,滿足題意,設,,則,,,,,,則,
設面FMN的法向量為,所以,
取,得,取面PAD的法向量,
由題知:,解得,
所以,存在,使得平面FMB與平面PAD所成的二面角余弦的絕對值為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為的導數(shù).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)證明:在區(qū)間上存在唯一零點;
(Ⅲ)設,若對任意,均存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最小正周期為π,它的一個對稱中心為(,0)
(1)求函數(shù)y=f(x)圖象的對稱軸方程;
(2)若方程f(x)=在(0,π)上的解為x1,x2,求cos(x1-x2)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數(shù)民族班學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名同學進行調查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(1)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率;
(2)從所有咀嚼檳榔顆數(shù)在20顆以上(包含20顆)的同學中隨機抽取3人,求被抽到班同學人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的是( )
A.“”是“直線與直線相互平行”的充分不必條件
B.“直線垂直平面內無數(shù)條直線”是“直線垂直于平面”的充分條件
C.已知、、為非零向量,則“”是“”的充要條件
D.:存在,.則:任意,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | n | 0.350 | |
第3組 | 30 | p | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計 | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并估計該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斐波那契數(shù)列,又稱黃金分割數(shù)列.因數(shù)學家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”,指的是這樣一個數(shù)列:1、1、2、3、5、8、13、21、34、…..,在數(shù)學上,斐波那契數(shù)列以如下被遞推的方法定義:,,.這種遞推方法適合研究生活中很多問題.比如:一六八中學食堂一樓到二樓有15個臺階,某同學一步可以跨一個或者兩個臺階,則他到二樓就餐有( )種上樓方法.
A.377B.610C.987D.1597
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com